Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ...Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.展开更多
The study was motivated by the fact that explosion inside the subway structure may not only cause direct life loss,but also damage the subway structure and lead to further loss of lives and properties.The propagation ...The study was motivated by the fact that explosion inside the subway structure may not only cause direct life loss,but also damage the subway structure and lead to further loss of lives and properties.The propagation law of explosion wave in the subway station was analyzed and a simplified model of overpressure in the subway station was also proposed.Whereafter,the improved dynamic cam-clay model of soil and the concrete damaged plasticity constitutive model were used for the dynamic analysis of the subway station.Meanwhile,the influences of soil stiffness and burial depth on the dynamic response of the subway station were looked into.The results show that the multi-peak overpressure in the subway station does not appear,and large stresses concentrate on the central column and the floor slab of the subway station,so some special reinforcement measures should be taken in these parts.The effect of soil stiffness and burial depth on the stress of the central column is little;however,the effect on the stress of the station side wall is relatively obvious.展开更多
On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its le...On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its left eigenmatrix any longer. On the other hand, eigenmatrix plays an important role in model identification, which is the basis of the identification of aerodynamic derivatives. In this study, we follow Scanlan’s simple bridge model and utilize the information provided by the left and right eigenmatrixes to structure a self-contained eigenvector algorithm in the frequency domain. For the purpose of fitting more accurate transfer function, the study adopts the combined sine-wave stimulation method in the numerical simulation. And from the simulation results, we can conclude that the derivatives identified by the self-contained eigenvector algorithm are more dependable.展开更多
文摘Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB.
基金Project(50978043) supported by the National Natural Science Foundation of China
文摘The study was motivated by the fact that explosion inside the subway structure may not only cause direct life loss,but also damage the subway structure and lead to further loss of lives and properties.The propagation law of explosion wave in the subway station was analyzed and a simplified model of overpressure in the subway station was also proposed.Whereafter,the improved dynamic cam-clay model of soil and the concrete damaged plasticity constitutive model were used for the dynamic analysis of the subway station.Meanwhile,the influences of soil stiffness and burial depth on the dynamic response of the subway station were looked into.The results show that the multi-peak overpressure in the subway station does not appear,and large stresses concentrate on the central column and the floor slab of the subway station,so some special reinforcement measures should be taken in these parts.The effect of soil stiffness and burial depth on the stress of the central column is little;however,the effect on the stress of the station side wall is relatively obvious.
基金supported by the State Key Program of National Natural Science Foundation of China (Grant No. 11032009)the National Natural Science Foundation of China (Grant No. 10772048)
文摘On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its left eigenmatrix any longer. On the other hand, eigenmatrix plays an important role in model identification, which is the basis of the identification of aerodynamic derivatives. In this study, we follow Scanlan’s simple bridge model and utilize the information provided by the left and right eigenmatrixes to structure a self-contained eigenvector algorithm in the frequency domain. For the purpose of fitting more accurate transfer function, the study adopts the combined sine-wave stimulation method in the numerical simulation. And from the simulation results, we can conclude that the derivatives identified by the self-contained eigenvector algorithm are more dependable.