Taizhou Bridge is the first kilometer level three-pylon two-span suspension bridge in the world and the structural complexity has significant effects on the seismic performance of the bridge. Shaking table test of Tai...Taizhou Bridge is the first kilometer level three-pylon two-span suspension bridge in the world and the structural complexity has significant effects on the seismic performance of the bridge. Shaking table test of Taizhou Bridge is arranged to investigate the effects of non-uniform ground motion input, collision between main and side spans and optimal seismic structural system. It's very important and difficult to design and manufacture the scaled down model of Taizhou Bridge used during the shaking table test. The key point is that the girder and pylons are very hard to be manufactured if the similarity ratio is strictly followed. Based on the finite element method (FEM) analysis, a simplified scaled down model is designed and the bending stiffness of the girder and pylon are strictly simulated, and the torsion stiffness and axial stiffness are not strictly simulated. The inner forces and displacements of critical sections, points of simplified model and theoretical model are compared by FEM analysis, and it's found out that the difference between the seismic responses is relatively small. So, the simplified model can be used to conduct the shaking table test by the FEM verification.展开更多
Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technica...Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technically mature besides beautiful appearance. Straight web plates of the steel box girder in longitudinal direction are proposed in order to ensure the integrity of the steel box girder, and to keep the stress of the steel box girder continuous in the middle pylon, as well as to reduce the gradient of the middle pylon columns. The cross section of the box girder has one box with three cells. Solid-web diaphragm plate with good integrity and high torsional stiffness is adopted. The lifting lugs are utilized in the anchors of suspender cable. In this paper, selection of the cross section of the steel box girder, the general structure design, local structure design and main structure calculation results of Taizhou Yangtze River Bridge are introduced emphatically.展开更多
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)+2 种基金Natural Science Foundation of China(No.50708074)the Ministry of Science and Technology of China(No.SLDRCE08-B-04)Kwang-Hua Fund for College of Civil Engineering,Tongji University
文摘Taizhou Bridge is the first kilometer level three-pylon two-span suspension bridge in the world and the structural complexity has significant effects on the seismic performance of the bridge. Shaking table test of Taizhou Bridge is arranged to investigate the effects of non-uniform ground motion input, collision between main and side spans and optimal seismic structural system. It's very important and difficult to design and manufacture the scaled down model of Taizhou Bridge used during the shaking table test. The key point is that the girder and pylons are very hard to be manufactured if the similarity ratio is strictly followed. Based on the finite element method (FEM) analysis, a simplified scaled down model is designed and the bending stiffness of the girder and pylon are strictly simulated, and the torsion stiffness and axial stiffness are not strictly simulated. The inner forces and displacements of critical sections, points of simplified model and theoretical model are compared by FEM analysis, and it's found out that the difference between the seismic responses is relatively small. So, the simplified model can be used to conduct the shaking table test by the FEM verification.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01) Key Programs for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-170)
文摘Taizhou Yangtze River Highway Bridge is the first three-pylon two-span suspension bridge in China. The main girder adopts flat steamline steel closed box girder which has well wind-resistant capability and is technically mature besides beautiful appearance. Straight web plates of the steel box girder in longitudinal direction are proposed in order to ensure the integrity of the steel box girder, and to keep the stress of the steel box girder continuous in the middle pylon, as well as to reduce the gradient of the middle pylon columns. The cross section of the box girder has one box with three cells. Solid-web diaphragm plate with good integrity and high torsional stiffness is adopted. The lifting lugs are utilized in the anchors of suspender cable. In this paper, selection of the cross section of the steel box girder, the general structure design, local structure design and main structure calculation results of Taizhou Yangtze River Bridge are introduced emphatically.