The objective of a bridge design is to produce a safe bridge that is elegant and satisfies all functionality requirements, at a cost that is acceptable to the owner. A successful bridge design must be natural, simple,...The objective of a bridge design is to produce a safe bridge that is elegant and satisfies all functionality requirements, at a cost that is acceptable to the owner. A successful bridge design must be natural, simple, original, and harmonious with its surroundings. Aesthetics is not an additional consideration in the design of a bridge, but is rather an integral part of bridge design. Both the structural configuration and the aesthetics of a bridge must be considered together during the conceptual design stage. To achieve such a task, the bridge design engineer must have a good understanding of structural theory and bridge aesthetics.展开更多
Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traff...Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traffic. To exactly evaluate the periodic alignments, internal forces and safety, geometrical and physical monitoring are needed during construction. This study aims at the requirement of dynamic geometric monitoring during Sutong Bridge construction, and introduces the realization and observing schemes of the self-developed GPS real-time dynamic geometrical deformation monitoring system. Affected by wind load and construction circumstance, GPS (global positioning system) monitoring signal contains a variety of noise. And the useful signal can be extracted from the signal after de-noising the noises. A de-noising method based on EMD (empirical mode decomposition) model is introduced here to process the bridge dynamic monitoring data, and with the wavelet threshold de-noising method are compared. The result shows that the EMD method has good adaptability, is free from the choice of wavelet bases and the number of decomposition layer. The method is an effective de-noising method for dynamic deformation monitoring to large-span bridges.展开更多
文摘The objective of a bridge design is to produce a safe bridge that is elegant and satisfies all functionality requirements, at a cost that is acceptable to the owner. A successful bridge design must be natural, simple, original, and harmonious with its surroundings. Aesthetics is not an additional consideration in the design of a bridge, but is rather an integral part of bridge design. Both the structural configuration and the aesthetics of a bridge must be considered together during the conceptual design stage. To achieve such a task, the bridge design engineer must have a good understanding of structural theory and bridge aesthetics.
文摘Construction progress of long-span bridge is complicated and the quality control is strict. Any disadvantage during construction may potentially affect the internal forces and deck alignments after it is open to traffic. To exactly evaluate the periodic alignments, internal forces and safety, geometrical and physical monitoring are needed during construction. This study aims at the requirement of dynamic geometric monitoring during Sutong Bridge construction, and introduces the realization and observing schemes of the self-developed GPS real-time dynamic geometrical deformation monitoring system. Affected by wind load and construction circumstance, GPS (global positioning system) monitoring signal contains a variety of noise. And the useful signal can be extracted from the signal after de-noising the noises. A de-noising method based on EMD (empirical mode decomposition) model is introduced here to process the bridge dynamic monitoring data, and with the wavelet threshold de-noising method are compared. The result shows that the EMD method has good adaptability, is free from the choice of wavelet bases and the number of decomposition layer. The method is an effective de-noising method for dynamic deformation monitoring to large-span bridges.