期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
桥梁温度跨度对纵连底座板受力及配筋的影响 被引量:5
1
作者 陈小平 赵卫华 《铁道标准设计》 北大核心 2013年第10期6-9,共4页
考虑轨道与桥梁相互作用特点,建立桥上CRTSⅡ型板式无砟轨道空间力学模型,分析桥梁温度跨度对纵连底座板制动力和伸缩力的影响,根据不同桥梁温度跨度下的纵向力,按极限状态法对纵连底座板进行配筋设计。结果表明:当桥梁温度跨度小于482 ... 考虑轨道与桥梁相互作用特点,建立桥上CRTSⅡ型板式无砟轨道空间力学模型,分析桥梁温度跨度对纵连底座板制动力和伸缩力的影响,根据不同桥梁温度跨度下的纵向力,按极限状态法对纵连底座板进行配筋设计。结果表明:当桥梁温度跨度小于482 m时,纵连底座板最大制动力随着温度跨度增加迅速增大,温度跨度超过482 m后纵连底座板的最大制动力趋于稳定;纵连底座板最大伸缩力随着桥梁温度跨度线性增大;纵连底座板配筋率增幅小于桥梁温度跨度的增幅。 展开更多
关键词 CRTSⅡ无砟轨道 纵连底座板 配筋 桥梁温度跨度
下载PDF
市域铁路曲线半径与桥梁最大温度跨度关系分析
2
作者 钱程 《城市轨道交通研究》 北大核心 2023年第S02期70-74,共5页
市域铁路小半径曲线大跨度连续梁地段,易产生桥上无缝线路检算不通过的问题。而钢轨伸缩调节器作为轨道结构薄弱环节,因其铺设条件严苛及自身问题,设计时较少考虑。在不设置钢轨伸缩调节器的原则基础上,采用有限元方法建立“线桥墩一体... 市域铁路小半径曲线大跨度连续梁地段,易产生桥上无缝线路检算不通过的问题。而钢轨伸缩调节器作为轨道结构薄弱环节,因其铺设条件严苛及自身问题,设计时较少考虑。在不设置钢轨伸缩调节器的原则基础上,采用有限元方法建立“线桥墩一体化”计算模型,对线路曲线半径与桥梁最大温度跨度关系进行分析探讨。结果表明:桥梁温度跨度与钢轨总应力呈一定的线性关系,可采用公式L=kσ+b来拟合表达;正线平面最小曲线半径R=350 m地段,计算得到的桥梁最大温度跨度值为132.9 m;曲线半径越小,允许的桥梁最大温度跨度值也越小。计算得到各级小半径曲线工况下对应的桥梁最大温度跨度值,在桥梁与轨道专业协同设计中,连续梁主跨与边跨设计取值建议参考对应的限值进行。 展开更多
关键词 市域铁路 钢轨伸缩调节器 小半径曲线 桥梁温度跨度 钢轨总应力
下载PDF
高铁长大桥上不同无砟轨道无缝线路受力研究 被引量:7
3
作者 戴公连 葛浩 《铁道工程学报》 EI 北大核心 2018年第7期23-29,64,共8页
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝... 研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。 展开更多
关键词 高速铁路 跨度 无砟轨道 无缝线路 桥梁温度跨度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部