In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the gird...To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.展开更多
Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Consider...Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.展开更多
This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay c...This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay cables used in Sutong Bridge,Baosteel has established three key technologies based on research of manufacture technology and technical innovation.The three key technologies are:"Double Tensioning + limiter die" process,"dominant process + fine adjustment" in integrated optimization technology and "three-level control" in hot dip galvanization.With these key technologies,Baosteel has produced 1 770 MPa galvanized wires for stay cable,which has high tensile strength,low relaxation and good torsion performances.展开更多
The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce s...The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.展开更多
The temperature field variation law and distribution characteristics of an orthotropic flat steel box girder under sunny conditions were analyzed through a field temperature test on the steel box girder of the operati...The temperature field variation law and distribution characteristics of an orthotropic flat steel box girder under sunny conditions were analyzed through a field temperature test on the steel box girder of the operational Runyang Yangtze River Bridge(the suspension bridge part).Function optimization fitting and error analysis of the test data were conducted.A temperature gradient distribution curve applicable to a hexagonal flat steel box girder was proposed.Based on the measurement results,the temperature effect of an orthotropic flat steel box girder was analyzed using finite element method and the effects of different temperature gradient modes on the mechanical characteristics and stress distribution of the steel box girder were compared.Under sunny conditions,heat conduction in the flat steel box girder structure shows distinct "box-room effect" characteristics,and the actual temperature gradient distribution is inconsistent with the one suggested by the existing standards.The thermal stress of a steel box girder calculated from the measured temperature gradient mode exceeds that calculated from the standard,and the intensity approximates that under the action of designed vehicle loads.The temperature-induced stress is distributed centrally near the manufacturing welds of the orthotropic steel box girder,which should be considered in design,construction and research.Results from this study could supplement the existing bridge and culvert design standards.展开更多
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
基金Project(50608008) supported by the National Natural Science Foundation of Chinaproject(20050536002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.
文摘Despite appropriate design of girder under bending and shear,the deflection of long steel girders usually exceeds the allowable range,and therefore the structural designers encounter challenges in this regard.Considering significant features of the cables,namely,low weight,small cross section,and high tensile strength,they are used in this research so as to control the deflection of long girder bridges,rather than increasing their heights.In this study,theoretical relations are developed to calculate the increase in pre-tensioning force of V-shaped steel cables under external loading as well as the deflection of steel girder bridges with V-shaped cables and different support conditions.To verify the theoretical relations,the steel girder bridge is modeled in the finite element ABAQUS software with different support conditions without cable and with V-shaped cables.The obtained results show that the theoretical relations can appropriately predict the deflection of girder bridge with V-shaped cables and different support conditions.In this study,the effects of the distance from support on the deflection of mid span are studied in both simply supported and fixed supported girder bridge so as to obtain the appropriate distance from support causing the minimum deflection.
基金National Science and Technology Planning Project(No.2006BAG04B02)
文摘This paper focuses on introducing the manufacture technology of 1 770 MPa galvanized steel wires for stay cables applied to domestic bridges.During the development practices of high strength galvanized wire for stay cables used in Sutong Bridge,Baosteel has established three key technologies based on research of manufacture technology and technical innovation.The three key technologies are:"Double Tensioning + limiter die" process,"dominant process + fine adjustment" in integrated optimization technology and "three-level control" in hot dip galvanization.With these key technologies,Baosteel has produced 1 770 MPa galvanized wires for stay cable,which has high tensile strength,low relaxation and good torsion performances.
文摘The conventional dynamic control devices,such as fluid viscous damper(VFD)and isolating bearings,are unsuitable for the double-deck cable-stayed bridge due to a lack of sustainability,so it is necessary to introduce some high-tech dynamic control devices to reduce dynamic response for double-deck cable-stayed bridges under earthquakes.A(90+128)m-span double-deck cable-stayed bridge with a steel truss beam is taken as the prototype bridge.A 3D finite element model is built to conduct the nonlinear time-history analysis of different site categories in fortification intensityⅨ(0.40 g)degree area.Two new types of dynamic control devices-cable sliding friction aseismic bearings(CSFABs)and elasticity fluid viscous dampers composite devices(EVFDs)are introduced to reduce the dynamic responses of double-deck cable-stayed bridges with steel truss beam.The parametric optimization design for the damping coefficient C and the elastic stiffness of spring K of EVFDs is conducted.The following conclusions are drawn:(1)The hybrid support system by EVFDs and CSFABs play a good function under both seismic and regular work,especially in eliminating the expansion joints damage;(2)The hybrid support system can reduce the beam-end displacement by 75%and the tower-bottom bending moment by 60%under the longitudinal seismic excitation.In addition,it can reduce the pier-bottom bending moment by at least 45%under transverse seismic and control the relative displacement between the pier and beam within 0.3 m.(3)Assuming the velocity indexα=0.3,the parametric optimization suggests the damping coefficient C as 2000 kN·s·m-1in siteⅠ0,4000kN·s·m-1in siteⅡ,6000 kN·s·m-1in siteⅣ,and the elastic stiffness of spring K as 10000 kN/m in siteⅠ0,50000 kN/m in siteⅡ,and 100000 kN/m in siteⅣ.
基金supported by the Engineering Section of the Jiangsu Runyang Bridge Development Co.,Ltdthe National Science & Technology Support Program of China (Grant No. 2009BAG15B03)the National Science Foundation of China (Grant No. 51078080)
文摘The temperature field variation law and distribution characteristics of an orthotropic flat steel box girder under sunny conditions were analyzed through a field temperature test on the steel box girder of the operational Runyang Yangtze River Bridge(the suspension bridge part).Function optimization fitting and error analysis of the test data were conducted.A temperature gradient distribution curve applicable to a hexagonal flat steel box girder was proposed.Based on the measurement results,the temperature effect of an orthotropic flat steel box girder was analyzed using finite element method and the effects of different temperature gradient modes on the mechanical characteristics and stress distribution of the steel box girder were compared.Under sunny conditions,heat conduction in the flat steel box girder structure shows distinct "box-room effect" characteristics,and the actual temperature gradient distribution is inconsistent with the one suggested by the existing standards.The thermal stress of a steel box girder calculated from the measured temperature gradient mode exceeds that calculated from the standard,and the intensity approximates that under the action of designed vehicle loads.The temperature-induced stress is distributed centrally near the manufacturing welds of the orthotropic steel box girder,which should be considered in design,construction and research.Results from this study could supplement the existing bridge and culvert design standards.