Adjacent high-rise building with CFG pile composite foundation was studied using model test method to investigate stress and displacement of the foundation pile retaining structure, the subsidence and transmogrificati...Adjacent high-rise building with CFG pile composite foundation was studied using model test method to investigate stress and displacement of the foundation pile retaining structure, the subsidence and transmogrification law of the composite foundation. Two different project cases with and without high-rise building adjacent to pile foundation were compared. The relationships of slope pile bending moment, earth pressure, pile top displacement and complex settlement with respect to time were obtained. 1) When there is no adjacent building, the displacement of supporting system caused by excavation is mainly in the horizontal direction; while when the adjacent building exists, the displacement of supporting system will be vertical. 2) When the excavation depth is less than or equal to the adjacent building's composite foundation depth, the force of supporting structure is uniform and has small value, at the same time, the pile strength is in fully use and the foundation is stable; while when the excavation depth is greater than the depth of adjacent building's composite foundation, the results will be opposite. 3) During the excavation process, the adjustment of the composite ground loads on the supporting structure is carried out downward and the force of the supporting structure is reduced through the deformation of the bearing layer.展开更多
In order to study bearing characteristics of bridge pile at steep slope under complex loads in mountians, according to double pile-column bridge piers engineering at steep slope and test models in laboratory, finite e...In order to study bearing characteristics of bridge pile at steep slope under complex loads in mountians, according to double pile-column bridge piers engineering at steep slope and test models in laboratory, finite element analysis of pile-column bridge piers was carried out using software ADINA under different loadings, such as horizontal loading in the longitudinal direction along bridge, vertical loadings, slope top loadings and complex loadings. The numerical simulation results show that displacements of front pile pier top and back pile pier top are different under horizontal loadings in the longitudinal direction along bridge or vertical loadings, the displacements of front pile pier top are higher than those of back pile pier top, and its difference increases with the increase of loadings. Vertical displacements will also appear under slope top loadings, and displacements of front pier top are higher than those of back pier top too, while its difference reduces with the increase of loadings. Displacements of both front pile pier top and back pile pier top under comlex loading are larger than those under single loading.展开更多
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(20120022120003) supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2-9-2012-65) supported by the Fundamental Research Funds for the Central Universities,China
文摘Adjacent high-rise building with CFG pile composite foundation was studied using model test method to investigate stress and displacement of the foundation pile retaining structure, the subsidence and transmogrification law of the composite foundation. Two different project cases with and without high-rise building adjacent to pile foundation were compared. The relationships of slope pile bending moment, earth pressure, pile top displacement and complex settlement with respect to time were obtained. 1) When there is no adjacent building, the displacement of supporting system caused by excavation is mainly in the horizontal direction; while when the adjacent building exists, the displacement of supporting system will be vertical. 2) When the excavation depth is less than or equal to the adjacent building's composite foundation depth, the force of supporting structure is uniform and has small value, at the same time, the pile strength is in fully use and the foundation is stable; while when the excavation depth is greater than the depth of adjacent building's composite foundation, the results will be opposite. 3) During the excavation process, the adjustment of the composite ground loads on the supporting structure is carried out downward and the force of the supporting structure is reduced through the deformation of the bearing layer.
基金Projects(50878083,50578060)supported by the National Natural Science Foundation of ChinaProject(200831878531)supported by the Ministry of Transportation of China
文摘In order to study bearing characteristics of bridge pile at steep slope under complex loads in mountians, according to double pile-column bridge piers engineering at steep slope and test models in laboratory, finite element analysis of pile-column bridge piers was carried out using software ADINA under different loadings, such as horizontal loading in the longitudinal direction along bridge, vertical loadings, slope top loadings and complex loadings. The numerical simulation results show that displacements of front pile pier top and back pile pier top are different under horizontal loadings in the longitudinal direction along bridge or vertical loadings, the displacements of front pile pier top are higher than those of back pile pier top, and its difference increases with the increase of loadings. Vertical displacements will also appear under slope top loadings, and displacements of front pier top are higher than those of back pier top too, while its difference reduces with the increase of loadings. Displacements of both front pile pier top and back pile pier top under comlex loading are larger than those under single loading.