By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor ...By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible展开更多
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyze...Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.展开更多
Nine reinforced concrete (RC) beams strengthened by glass fiber reinforced polymer (GFRP) sheets and three control beams are tested. Four parameters are considered in this experimental program included the concrete st...Nine reinforced concrete (RC) beams strengthened by glass fiber reinforced polymer (GFRP) sheets and three control beams are tested. Four parameters are considered in this experimental program included the concrete strength, the reinforcement ratio, the number of GFRP sheets, and the shear span ratio. It is shown that the application of GFRP sheets can increase the ultimate flexural capacity. The effect of the concrete strength, the reinforcement ratio and the number of GFRP sheets on load capacity is obvious. The shear span ratio can affect the failure mode of RC beams strengthened by GFRP sheets. A theoretical model for flexural behavior of the strengthened RC beam is also developed.展开更多
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-s...To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable’s cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge, its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable’s cross-sectional area should be deter-mined by the principle of equivalent axial stiffness.展开更多
To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the ...To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.展开更多
The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral...The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.展开更多
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica...In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.展开更多
A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. Accor...A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.展开更多
Considering the construction features of prestressed concrete bridge, the comprehensive evaluation method about the bridge damage conditions are studied. Particular attentions are paid on establishing a muhilevel eval...Considering the construction features of prestressed concrete bridge, the comprehensive evaluation method about the bridge damage conditions are studied. Particular attentions are paid on establishing a muhilevel evaluation model for damaged prestressed concrete bridge, and the evaluation indices of the model as well as the rating standards are defined in the model. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element which is no sub-level elements. When evaluating the elements in sub-item level or index level of the model, the weights of elements that are pertained to one element are adopted, taking account of their deterioration degree. At the same time, the dam- age conditions of bridge are characterized by relative degree, element evaluation scale and structural technology mark of bridge, so it agrees with Code for Maintenance of Highway Bridges and Culvers.展开更多
The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Ot...The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Other peculiarities are connected with physical peculiarities of the device behaviour. To provide the analysis of structure hehaviour under the condition of the lack of input information, two types of design models of seismic protection devices were considered. They are the dampers linearization and the modelling of real dampers by dry friction ones. The dampers linearization makes it possible to use the existing software for calculating linear strongly-damped systems. To calculate structures with dry friction dampers, a new software was worked out. In this case, the structure is described as a piecewise-linear system of a relay-type. The investigations of the structure oscillations take into account both horizontal and vertical components of earthquake input. Under this condition, horizontal oscillation equations of structures are the MaRie-Hill ones. The input and structure parameters which caused the structure instability are estimated. To exclude the structure instability, high damping devices should be used. These methods were used for seismic resistant analysis of bridges with spherical bearings and hydraulic dampers applied in Sochi.展开更多
Experimental investigations into the collapse behavior of a box-shape hull girder subjected to extreme wave-induced loads are presented.The experiment was performed using a scaled model in a tank.In the middle of the ...Experimental investigations into the collapse behavior of a box-shape hull girder subjected to extreme wave-induced loads are presented.The experiment was performed using a scaled model in a tank.In the middle of the scaled model,sacrificial specimens with circular pillar and trough shapes which respectively show different bending moment-displacement characteristics were mounted to compare the dynamic collapse characteristics of the hull girder in waves.The specimens were designed by using finite element(FE)-analysis.Prior to the tank tests,static four-point-bending tests were conducted to detect the load-carrying capacity of the hull girder.It was shown that the load-carrying capacity of a ship including reduction of the capacity after the ultimate strength can be reproduced experimentally by employing the trough type specimens.Tank tests using these specimens were performed under a focused wave in which the hull girder collapses under once and repetitive focused waves.It was shown from the multiple collapse tests that the increase rate of collapse becomes higher once the load-carrying capacity enters the reduction path while the increase rate is lower before reaching the ultimate strength.展开更多
Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cro...Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.展开更多
As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexibl...As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexible beam should satisfy both the strength and dynamic requirements.However,traditional optimization research focused only on either the strength or dynamical characteristics.To sufficiently improve the performance of the flexible beam,both aspects must be considered.This paper proposes a two-stage optimization method based on the Hamilton variational principle:Variational asymptotic beam section analysis(VABS)program and genetic algorithm(GA).Consequently,a two-part analysis model based on the Hamilton variational principle and VABS is established to calculate section characteristics and structural dynamics characteristics,respectively.Subsequently,the two parts are combined to establish a two-stage optimization process and search with GA to obtain the best dynamic characteristics combinations.Based on the primary optimization results,the section characteristics of the flexible beam are further optimized using GA.The optimization results show that the torsional stiffness decreases by 36.1%compared with the full 0°laying scheme without optimization and the dynamic requirements are achieved.The natural frequencies of flapping and torsion meet the requirements(0.5 away from the passing frequencies of the blade,0.25 away from the excitation force frequency,and the flapping and torsion frequencies keep a corresponding distance).The results indicate that the optimization method can significantly improve the performance of the flexible beam.展开更多
基金Supported by the Jiangshu Province Communication Scientific Research Project(06Y21)Zhejiang Province Road Scientific Research Project(2007-013-11L)~~
文摘By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
文摘Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.
文摘Nine reinforced concrete (RC) beams strengthened by glass fiber reinforced polymer (GFRP) sheets and three control beams are tested. Four parameters are considered in this experimental program included the concrete strength, the reinforcement ratio, the number of GFRP sheets, and the shear span ratio. It is shown that the application of GFRP sheets can increase the ultimate flexural capacity. The effect of the concrete strength, the reinforcement ratio and the number of GFRP sheets on load capacity is obvious. The shear span ratio can affect the failure mode of RC beams strengthened by GFRP sheets. A theoretical model for flexural behavior of the strengthened RC beam is also developed.
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
基金Project (No. 502118) supported by the Natural Science Foundation of Zhejiang Province, China
文摘To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable’s cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge, its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable’s cross-sectional area should be deter-mined by the principle of equivalent axial stiffness.
基金Projects(11832013,51878350)supported by the National Natural Science Foundation of ChinaProject(B200201063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(BK20180433)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.
基金Sponsored by the National Key Technology Research and Development Program (Grant No.2006BAJ12B03-2)
文摘The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.
基金The National Natural Science Foundation of China(No.51778183)the National Key Research and Development Program of China(No.2016YFC0701907)the Distinguished Young Scholar Foundation of Jiangsu Province(No.BK20160027)
文摘In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.
基金Project(51208176)supported by the National Natural Science Foundation of ChinaProjects(2012M511187,2013T60493)supported by the China Postdoctoral Science FoundationProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.
基金the Science and Technology Program for West Communication Construction of MOC(Grant No.2005ZB05)
文摘Considering the construction features of prestressed concrete bridge, the comprehensive evaluation method about the bridge damage conditions are studied. Particular attentions are paid on establishing a muhilevel evaluation model for damaged prestressed concrete bridge, and the evaluation indices of the model as well as the rating standards are defined in the model. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element which is no sub-level elements. When evaluating the elements in sub-item level or index level of the model, the weights of elements that are pertained to one element are adopted, taking account of their deterioration degree. At the same time, the dam- age conditions of bridge are characterized by relative degree, element evaluation scale and structural technology mark of bridge, so it agrees with Code for Maintenance of Highway Bridges and Culvers.
文摘The peculiarities of calculating isolated structures with spherical bearings are analyzed in this paper. Some of peculiarities are caused by the lack of data at the moment when engineering solutions had to be made, Other peculiarities are connected with physical peculiarities of the device behaviour. To provide the analysis of structure hehaviour under the condition of the lack of input information, two types of design models of seismic protection devices were considered. They are the dampers linearization and the modelling of real dampers by dry friction ones. The dampers linearization makes it possible to use the existing software for calculating linear strongly-damped systems. To calculate structures with dry friction dampers, a new software was worked out. In this case, the structure is described as a piecewise-linear system of a relay-type. The investigations of the structure oscillations take into account both horizontal and vertical components of earthquake input. Under this condition, horizontal oscillation equations of structures are the MaRie-Hill ones. The input and structure parameters which caused the structure instability are estimated. To exclude the structure instability, high damping devices should be used. These methods were used for seismic resistant analysis of bridges with spherical bearings and hydraulic dampers applied in Sochi.
基金Supported by the Ministry of Education, Science, Sports, and Culture, Grant-in-aid for Scientific Research (A), (23246150), 2011
文摘Experimental investigations into the collapse behavior of a box-shape hull girder subjected to extreme wave-induced loads are presented.The experiment was performed using a scaled model in a tank.In the middle of the scaled model,sacrificial specimens with circular pillar and trough shapes which respectively show different bending moment-displacement characteristics were mounted to compare the dynamic collapse characteristics of the hull girder in waves.The specimens were designed by using finite element(FE)-analysis.Prior to the tank tests,static four-point-bending tests were conducted to detect the load-carrying capacity of the hull girder.It was shown that the load-carrying capacity of a ship including reduction of the capacity after the ultimate strength can be reproduced experimentally by employing the trough type specimens.Tank tests using these specimens were performed under a focused wave in which the hull girder collapses under once and repetitive focused waves.It was shown from the multiple collapse tests that the increase rate of collapse becomes higher once the load-carrying capacity enters the reduction path while the increase rate is lower before reaching the ultimate strength.
文摘Trusses used for roof support in coal mines are constructed of two grouted bolts installed at opposing forty-five degree angles into the roof and a cross member that ties the angled bolts together. The load on the cross member is vertical, which is transverse to the longitudinal axis, and therefore the cross member is loaded in the weakest direction. Laboratory tests were conducted to determine the vertical load capacity and deflection of three different types of cross members. Single-point load tests, with the load applied in the center of the specimen and double-point load tests, with a span of 2.4 m, were conducted. For the single-point load configuration, the yield of the 25 mm solid bar cross member was nominally 98 kN of vertical load, achieved at 42 cm of deflection. For cable cross members, yield was not achieved even after 45 cm of deflection. Peak vertical loads were about 89 kN for 17 mm cables and67 kN for the 15 mm cables. For the double-point load configurations, the 25 mm solid bar cross members yielded at 150 kN of vertical load and 25 cm of deflection. At 25 cm of deflection individual cable strands started breaking at 133 and 111 kN of vertical load for the 17 and 15 mm cable cross members respectively.
基金supported by the Foundation of National Key Laboratory of Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics(No.614222004030917)。
文摘As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexible beam should satisfy both the strength and dynamic requirements.However,traditional optimization research focused only on either the strength or dynamical characteristics.To sufficiently improve the performance of the flexible beam,both aspects must be considered.This paper proposes a two-stage optimization method based on the Hamilton variational principle:Variational asymptotic beam section analysis(VABS)program and genetic algorithm(GA).Consequently,a two-part analysis model based on the Hamilton variational principle and VABS is established to calculate section characteristics and structural dynamics characteristics,respectively.Subsequently,the two parts are combined to establish a two-stage optimization process and search with GA to obtain the best dynamic characteristics combinations.Based on the primary optimization results,the section characteristics of the flexible beam are further optimized using GA.The optimization results show that the torsional stiffness decreases by 36.1%compared with the full 0°laying scheme without optimization and the dynamic requirements are achieved.The natural frequencies of flapping and torsion meet the requirements(0.5 away from the passing frequencies of the blade,0.25 away from the excitation force frequency,and the flapping and torsion frequencies keep a corresponding distance).The results indicate that the optimization method can significantly improve the performance of the flexible beam.