By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor ...By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible展开更多
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyze...Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.展开更多
Nine reinforced concrete (RC) beams strengthened by glass fiber reinforced polymer (GFRP) sheets and three control beams are tested. Four parameters are considered in this experimental program included the concrete st...Nine reinforced concrete (RC) beams strengthened by glass fiber reinforced polymer (GFRP) sheets and three control beams are tested. Four parameters are considered in this experimental program included the concrete strength, the reinforcement ratio, the number of GFRP sheets, and the shear span ratio. It is shown that the application of GFRP sheets can increase the ultimate flexural capacity. The effect of the concrete strength, the reinforcement ratio and the number of GFRP sheets on load capacity is obvious. The shear span ratio can affect the failure mode of RC beams strengthened by GFRP sheets. A theoretical model for flexural behavior of the strengthened RC beam is also developed.展开更多
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the ...To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.展开更多
基金Supported by the Jiangshu Province Communication Scientific Research Project(06Y21)Zhejiang Province Road Scientific Research Project(2007-013-11L)~~
文摘By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
文摘Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.
文摘Nine reinforced concrete (RC) beams strengthened by glass fiber reinforced polymer (GFRP) sheets and three control beams are tested. Four parameters are considered in this experimental program included the concrete strength, the reinforcement ratio, the number of GFRP sheets, and the shear span ratio. It is shown that the application of GFRP sheets can increase the ultimate flexural capacity. The effect of the concrete strength, the reinforcement ratio and the number of GFRP sheets on load capacity is obvious. The shear span ratio can affect the failure mode of RC beams strengthened by GFRP sheets. A theoretical model for flexural behavior of the strengthened RC beam is also developed.
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
基金Projects(11832013,51878350)supported by the National Natural Science Foundation of ChinaProject(B200201063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(BK20180433)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.