To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for ...To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.展开更多
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
[Obective] This study amied to evaluate the direct usage value of Liangzi Lake, like plants and animal resources and water storage value. [Method] It was measured through the market value method. The physical environm...[Obective] This study amied to evaluate the direct usage value of Liangzi Lake, like plants and animal resources and water storage value. [Method] It was measured through the market value method. The physical environment was introduced and the productivity of the lake was investigated both through the literature materials and the investigations. The market value method was clarified in this paper as well as its operation process and the application fields. [Result] Based on the introduction of the current situation in Liangzi Lake, the direct usage value was estimated as 1.32 billion Yuan/year. Plant resources value was 318 million Yuan/year; animal resources value was 675 million Yuan/year; and water storage value was 325 million Yuan/year for the three parts. [Conclusion] This paper will attract more attention to the emphasis of the reasonable development of nature sources.展开更多
There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standa...There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standards in different periods are introduced and compared; The working status of the railway is investigated. According to the developing trend of separating passenger and freight transports, by comparing the computed results of the bridge effect and the fatigue cumulative damage, the applicabilities of bearing capacity and fatigue are analyzed for existing bridges. The results indicate that the bearing capacities of 99% existing bridges are suitable for the demand of 26.5 t (axle-weight) freight trains. However, for culverts, bridges with spans less than 20 m, longitudinal and transverse beams of through bridges, suspenders of truss bridges and other locally-stressed members should be evaluated and reinforced due to the increasing axle-weight.展开更多
Time domain dynamic analysis of inclined dam-reservoir-foundation interaction was conducted using finite difference method (FDM). The Timoshenko beam theory and the Euler-Bemoulli beam theory were implemented to dra...Time domain dynamic analysis of inclined dam-reservoir-foundation interaction was conducted using finite difference method (FDM). The Timoshenko beam theory and the Euler-Bemoulli beam theory were implemented to draw out governing equation of beam. The interactions between the dam and the soil were modeled by using a translational spring and a rotational spring. A Sommerfeld's radiation condition at the infinity boundary of the fluid domain was adopted. The effects of the reservoir bottom absorption and surface waves on the dam-reservoir-foundation interaction due to the earthquake were studied. To avoid the instability of solution, a semi-implicit scheme was used for the discretization of the governing equation of dam and an explicit scheme was used for the discretization of the governing equation of fluid. The results show that as the slope of upstream dam increases, the hydrodynamic pressure on the dam is reduced. Moreover, when the Timoshenko beam theory is used, the system response increases.展开更多
Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Bas...Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.展开更多
To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-s...To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable’s cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge, its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable’s cross-sectional area should be deter-mined by the principle of equivalent axial stiffness.展开更多
This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model ...This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.展开更多
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs...Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.展开更多
The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a ...The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a bridge, defining purpose of place and context, the spirit of creativity and the reasoned progression of an idea. It also explores the exploitation of materials technology and construction innovation and the tension between lightness and mass and between sculpture and scale. Present parameters of tempered and laminated glass create possibility of modern architecture of footbridges which are being full of transparency and light reflex effects. Four projects, using glass panels designed by Santiago Calatrava, have been presented in this paper. GFRP (glass fiber retrofit polymer) makes new horizon in material technology, helps to enrich new conception of structure with longer durability, low weight of deck and new creation of architecture line. The paper has described a few results of FEM (finite element method) analysis of footbridge with modular bridge GFRP deck system. The footbridge was excited by impact and human-induced vibrations. Composite material consists of glass fibers and polymer matrix is a promising alternative against traditional materials. New architecture and modern material engineering are looking for fresh possibilities of form and shape of structure, long durability and extraordinary technical parameters of building elements.展开更多
According to the two-dimensional(2-D) thermo-elasticity theory, the exact elasticity solution of the simply supported laminated beams subjected to thermo-loads was studied. An analytical method was presented to obtain...According to the two-dimensional(2-D) thermo-elasticity theory, the exact elasticity solution of the simply supported laminated beams subjected to thermo-loads was studied. An analytical method was presented to obtain the temperature, displacement and stress fields in the beam. Firstly, the general solutions of temperature, displacements and stresses for a single-layered simply supported beam were obtained by solving the 2-D heat conduction equation and the 2-D elasticity equations, respectively. Then, based on the continuity of temperature, heat flux, displacements and stresses on the interface of two adjacent layers, the formulae of temperature, displacements and stresses between the lowest layer and the top layer of the beam were derived out in a recurrent manner. Finally, the unknown coefficients in the solutions were determined by the use of the upper surface and lower surface conditions of the beam. The distributions of temperature, displacement and stress in the beam were obtained by substituting these coefficients back to the recurrence formulae and the solutions. The excellent convergence of the present method has been demonstrated and the results obtained by the present method agree well with those from the finite element method. The effects of surface temperatures, thickness, layer number and material properties of the plate on the temperature distribution were discussed in detail. Numerical results reveal that the displacements and stresses monotonically increase with the increase of surface temperatures. In particular, the horizontal stresses are discontinuous at the interface.展开更多
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast trac...Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.展开更多
A comparative study on the photosynthetic parameters among intergeneric progenies derived from \%Oryza sativa\% L.×\%Sorghum vulgare\% L., its maternal parent Gui 630 and commercial 3\|line hybrid rice Shanyou 63...A comparative study on the photosynthetic parameters among intergeneric progenies derived from \%Oryza sativa\% L.×\%Sorghum vulgare\% L., its maternal parent Gui 630 and commercial 3\|line hybrid rice Shanyou 63 in pot experiment in greenhouse was conducted. The morphological and photosynthetic characters of canopy leaves and chlorophyll fluorescence kinetic parameters including \%F\%\-v/\%F\%\-m, \%F\%\-v/\%F\%\-0, photochemical quenching coefficient and non\|photochemical coefficient of canopy leaves of 3 varieties were measured. The results showed the progeny, Yuanyou 1, derived from an intergeneric cross of rice and sorghum possesses better canopy spatial architecture with thicker, heavier and bigger canopy leaf than its maternal parent Gui 630. Higher photosynthetic rate due to higher chlorophyll content, higher primary energy transformation efficiency, potential of PSII and non\|photochemical quenching coefficient (\%q\%\-E) were also measured in Yuanyou 1. These explain partly why the intergeneric progeny has higher biomass production, and better tolerance to adverse conditions and higher field yields even under stress conditions.展开更多
The application feasibility of hydroforming in frame longeron large parts is verified for the first time at home. The result of the research on the structure design and process analysis for frame longeron shows that h...The application feasibility of hydroforming in frame longeron large parts is verified for the first time at home. The result of the research on the structure design and process analysis for frame longeron shows that hydroforming can he fully realized. With stiffness is comparison, collision test simulation and cross section force with traditional drawing- assembly welding techniques, it has been found that hydroforming combining has multiple advantages such as light- weight, high stiffness, reduction in the number of parts, high precision, hence reduction the associated machining and welding and so on. It is especially suitable for forming various lightweight components used for the chassis parts in automotive.展开更多
The perceptible vibration of curved twin I-girder bridges under traffic loads is an important design consideration, because this bridge have rather low torsional stiffness that produce excessive vibrations. The object...The perceptible vibration of curved twin I-girder bridges under traffic loads is an important design consideration, because this bridge have rather low torsional stiffness that produce excessive vibrations. The objective of this investigation was to study the vibration of curved twin I-girder bridges due to moving vehicles and the effect of vibrations on bridge users. To this end, a comprehensive three-dimensional finite element models for bridge and vehicle are developed by using ANSYS code for studying bridge-vehicle interaction and the resultant sensitivity to vibration. Truck parameters include the body, the suspension and the tires. Gap and actuator elements are incorporated into the tire models to simulate the separation between the tires and road surface, and road surface roughness, respectively. Road roughness profiles are generated from power spectral density and cross spectral functions. To couple the motion of the bridge and vehicle, Lagrange multipliers and constraint equations are utilized through the augmented Lagrangian method. A parametric study is performed to identify the effect of various parameters on the vibration of the bridge. The results have been expressed in the form of human perceptibility curves. This study finds that the bridge response is significantly influenced by the road roughness, bump height at expansion joint and vehicle speeds. The results show that the inclusion of features such as increasing the torsional stiffness by providing additional stiffened bracing has major effects on the reduction of perceptible vibration.展开更多
Objective. To evaluate the effects of alendronate on the structural properties of trabecular bone.Methods. Alendronate was administered at a daily p. o. dose of 0. 5 mg/kg over a 12-week period in hound dogs (n = 8 fo...Objective. To evaluate the effects of alendronate on the structural properties of trabecular bone.Methods. Alendronate was administered at a daily p. o. dose of 0. 5 mg/kg over a 12-week period in hound dogs (n = 8 for both the control and treated group), and the structural indices of the lumbar vertebral (LI and L2) trabecular bone were assessed directly from 3-D images.Results. Treatment with alendronate increased bone volume fraction by 9. 5% and 7. 7% in L1 and L2 respectively. Trabecular thickness significantly increased after alendronate treatment, whereas trabecular separation remained constant. The degree of anisotropy for the alendronate - treated group was decreased compared with that of the control group. Bone surface to volume ratio declined significantly in the alendronate-reated group, whereas alendronate induced a higher bone surface density.Conclusion. Alendronate increased the structural properties of canine trabecular bone after short-term treatment at a dose of 0. 5 mg · kg-1·day-1.展开更多
Standard is an effective carrier of developing circular economy while standard- ization is the foundation of scientific management of circular economy and the bridge for scientific research, production and application...Standard is an effective carrier of developing circular economy while standard- ization is the foundation of scientific management of circular economy and the bridge for scientific research, production and application. Therefore, it is necessary to explore how to give full play to the important roles of standardization in the development of circular economy, how to make use of standardization to accelerate the promotion and application of advanced technology for circular economy and to develop the circular economy with the help of standardization.展开更多
基金National Key Research and Development Program of China(No.2022YFC3004300)the National Natural Science Foundation of China(No.52378475).
文摘To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
文摘[Obective] This study amied to evaluate the direct usage value of Liangzi Lake, like plants and animal resources and water storage value. [Method] It was measured through the market value method. The physical environment was introduced and the productivity of the lake was investigated both through the literature materials and the investigations. The market value method was clarified in this paper as well as its operation process and the application fields. [Result] Based on the introduction of the current situation in Liangzi Lake, the direct usage value was estimated as 1.32 billion Yuan/year. Plant resources value was 318 million Yuan/year; animal resources value was 675 million Yuan/year; and water storage value was 325 million Yuan/year for the three parts. [Conclusion] This paper will attract more attention to the emphasis of the reasonable development of nature sources.
文摘There are more than eight different design standards in use for the existing railway bridges in China, which have different applicabilities for bridges built in different periods. In this paper, the design load standards in different periods are introduced and compared; The working status of the railway is investigated. According to the developing trend of separating passenger and freight transports, by comparing the computed results of the bridge effect and the fatigue cumulative damage, the applicabilities of bearing capacity and fatigue are analyzed for existing bridges. The results indicate that the bearing capacities of 99% existing bridges are suitable for the demand of 26.5 t (axle-weight) freight trains. However, for culverts, bridges with spans less than 20 m, longitudinal and transverse beams of through bridges, suspenders of truss bridges and other locally-stressed members should be evaluated and reinforced due to the increasing axle-weight.
文摘Time domain dynamic analysis of inclined dam-reservoir-foundation interaction was conducted using finite difference method (FDM). The Timoshenko beam theory and the Euler-Bemoulli beam theory were implemented to draw out governing equation of beam. The interactions between the dam and the soil were modeled by using a translational spring and a rotational spring. A Sommerfeld's radiation condition at the infinity boundary of the fluid domain was adopted. The effects of the reservoir bottom absorption and surface waves on the dam-reservoir-foundation interaction due to the earthquake were studied. To avoid the instability of solution, a semi-implicit scheme was used for the discretization of the governing equation of dam and an explicit scheme was used for the discretization of the governing equation of fluid. The results show that as the slope of upstream dam increases, the hydrodynamic pressure on the dam is reduced. Moreover, when the Timoshenko beam theory is used, the system response increases.
基金Projects(50908232, 51108460) supported by the National Natural Science Foundation of China
文摘Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.
基金Project (No. 502118) supported by the Natural Science Foundation of Zhejiang Province, China
文摘To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable’s cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge, its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable’s cross-sectional area should be deter-mined by the principle of equivalent axial stiffness.
基金Projects(11302252,11202230) supported by the National Natural Science Foundation of China
文摘This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(094801020) supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093) supported by the Doctoral Candidate Research Innovation Project of Hunan Province, ChinaProject(20117Q008) supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.
文摘The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a bridge, defining purpose of place and context, the spirit of creativity and the reasoned progression of an idea. It also explores the exploitation of materials technology and construction innovation and the tension between lightness and mass and between sculpture and scale. Present parameters of tempered and laminated glass create possibility of modern architecture of footbridges which are being full of transparency and light reflex effects. Four projects, using glass panels designed by Santiago Calatrava, have been presented in this paper. GFRP (glass fiber retrofit polymer) makes new horizon in material technology, helps to enrich new conception of structure with longer durability, low weight of deck and new creation of architecture line. The paper has described a few results of FEM (finite element method) analysis of footbridge with modular bridge GFRP deck system. The footbridge was excited by impact and human-induced vibrations. Composite material consists of glass fibers and polymer matrix is a promising alternative against traditional materials. New architecture and modern material engineering are looking for fresh possibilities of form and shape of structure, long durability and extraordinary technical parameters of building elements.
基金Project(2012CB026205)supported by the National Basic Research Program of ChinaProject(51238003)supported by the National Natural Science Foundation of ChinaProject(2014Y01)supported by the Transportation Department of Jiangsu Province,China
文摘According to the two-dimensional(2-D) thermo-elasticity theory, the exact elasticity solution of the simply supported laminated beams subjected to thermo-loads was studied. An analytical method was presented to obtain the temperature, displacement and stress fields in the beam. Firstly, the general solutions of temperature, displacements and stresses for a single-layered simply supported beam were obtained by solving the 2-D heat conduction equation and the 2-D elasticity equations, respectively. Then, based on the continuity of temperature, heat flux, displacements and stresses on the interface of two adjacent layers, the formulae of temperature, displacements and stresses between the lowest layer and the top layer of the beam were derived out in a recurrent manner. Finally, the unknown coefficients in the solutions were determined by the use of the upper surface and lower surface conditions of the beam. The distributions of temperature, displacement and stress in the beam were obtained by substituting these coefficients back to the recurrence formulae and the solutions. The excellent convergence of the present method has been demonstrated and the results obtained by the present method agree well with those from the finite element method. The effects of surface temperatures, thickness, layer number and material properties of the plate on the temperature distribution were discussed in detail. Numerical results reveal that the displacements and stresses monotonically increase with the increase of surface temperatures. In particular, the horizontal stresses are discontinuous at the interface.
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.
基金Project(50678176) supported by the National Natural Science Foundation of China
文摘Based on the construction bridge of Xiamen-Shenzhen high-speed railway(9-32 m simply-supported beam + 6×32 m continuous beam),the pier-beam-track finite element model,where the continuous beam of the ballast track and simply-supported beam are combined with each other,was established.The laws of the track stress,the pier longitudinal stress and the beam-track relative displacement were analyzed.The results show that reducing the longitudinal resistance can effectively reduce the track stress and the pier stress of the continuous beam,and increase the beam-track relative displacement.Increasing the rigid pier stiffness of continuous beam can reduce the track braking stress,increase the pier longitudinal stress and reduce the beam-track relative displacement,Increasing the rigid pier stiffness of simply-supported beam can reduce the track braking stress,the rigid pier longitudinal stress and the beam-track relative displacement.
文摘A comparative study on the photosynthetic parameters among intergeneric progenies derived from \%Oryza sativa\% L.×\%Sorghum vulgare\% L., its maternal parent Gui 630 and commercial 3\|line hybrid rice Shanyou 63 in pot experiment in greenhouse was conducted. The morphological and photosynthetic characters of canopy leaves and chlorophyll fluorescence kinetic parameters including \%F\%\-v/\%F\%\-m, \%F\%\-v/\%F\%\-0, photochemical quenching coefficient and non\|photochemical coefficient of canopy leaves of 3 varieties were measured. The results showed the progeny, Yuanyou 1, derived from an intergeneric cross of rice and sorghum possesses better canopy spatial architecture with thicker, heavier and bigger canopy leaf than its maternal parent Gui 630. Higher photosynthetic rate due to higher chlorophyll content, higher primary energy transformation efficiency, potential of PSII and non\|photochemical quenching coefficient (\%q\%\-E) were also measured in Yuanyou 1. These explain partly why the intergeneric progeny has higher biomass production, and better tolerance to adverse conditions and higher field yields even under stress conditions.
文摘The application feasibility of hydroforming in frame longeron large parts is verified for the first time at home. The result of the research on the structure design and process analysis for frame longeron shows that hydroforming can he fully realized. With stiffness is comparison, collision test simulation and cross section force with traditional drawing- assembly welding techniques, it has been found that hydroforming combining has multiple advantages such as light- weight, high stiffness, reduction in the number of parts, high precision, hence reduction the associated machining and welding and so on. It is especially suitable for forming various lightweight components used for the chassis parts in automotive.
文摘The perceptible vibration of curved twin I-girder bridges under traffic loads is an important design consideration, because this bridge have rather low torsional stiffness that produce excessive vibrations. The objective of this investigation was to study the vibration of curved twin I-girder bridges due to moving vehicles and the effect of vibrations on bridge users. To this end, a comprehensive three-dimensional finite element models for bridge and vehicle are developed by using ANSYS code for studying bridge-vehicle interaction and the resultant sensitivity to vibration. Truck parameters include the body, the suspension and the tires. Gap and actuator elements are incorporated into the tire models to simulate the separation between the tires and road surface, and road surface roughness, respectively. Road roughness profiles are generated from power spectral density and cross spectral functions. To couple the motion of the bridge and vehicle, Lagrange multipliers and constraint equations are utilized through the augmented Lagrangian method. A parametric study is performed to identify the effect of various parameters on the vibration of the bridge. The results have been expressed in the form of human perceptibility curves. This study finds that the bridge response is significantly influenced by the road roughness, bump height at expansion joint and vehicle speeds. The results show that the inclusion of features such as increasing the torsional stiffness by providing additional stiffened bracing has major effects on the reduction of perceptible vibration.
文摘Objective. To evaluate the effects of alendronate on the structural properties of trabecular bone.Methods. Alendronate was administered at a daily p. o. dose of 0. 5 mg/kg over a 12-week period in hound dogs (n = 8 for both the control and treated group), and the structural indices of the lumbar vertebral (LI and L2) trabecular bone were assessed directly from 3-D images.Results. Treatment with alendronate increased bone volume fraction by 9. 5% and 7. 7% in L1 and L2 respectively. Trabecular thickness significantly increased after alendronate treatment, whereas trabecular separation remained constant. The degree of anisotropy for the alendronate - treated group was decreased compared with that of the control group. Bone surface to volume ratio declined significantly in the alendronate-reated group, whereas alendronate induced a higher bone surface density.Conclusion. Alendronate increased the structural properties of canine trabecular bone after short-term treatment at a dose of 0. 5 mg · kg-1·day-1.
文摘Standard is an effective carrier of developing circular economy while standard- ization is the foundation of scientific management of circular economy and the bridge for scientific research, production and application. Therefore, it is necessary to explore how to give full play to the important roles of standardization in the development of circular economy, how to make use of standardization to accelerate the promotion and application of advanced technology for circular economy and to develop the circular economy with the help of standardization.