期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于多尺度梅尔倒谱系数的转辙机声信号状态识别方法 被引量:4
1
作者 姜琦 冯庆胜 《科学技术与工程》 北大核心 2022年第16期6680-6686,共7页
为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信... 为了准确地识别铁路转辙机所处的工作状态,保证列车能够安全行驶并转向,提出了一种基于声音信号的转辙机状态识别方法。首先将声音信号预处理后提取其梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC);为更加全面表征转辙机声信号的特点,对MFCC进行改进得到多尺度MFCC特征;引入卷积神经网络(convolutional neural network,CNN)构建转辙机声信号识别模型,并采用五折交叉验证法获得两种特征的识别准确率。将S700K型转辙机在4种状态下运行时采集的真实声音信号进行训练和测试。结果表明:多尺度MFCC特征可使转辙机声音状态识别准确率至少提高7.5%。并且在低信噪比(signal-to-noise ratio,SNR)下,多尺度MFCC特征也有更好的表现,其准确率相较传统MFCC可提升35%。 展开更多
关键词 梅尔系数(mfcc) 卷积神经网络(CNN) 交叉验证 状态识别 转辙机
下载PDF
基于MFCC与CNN的机械故障声音自动识别
2
作者 黄炜 罗谢飞 《电声技术》 2024年第6期129-131,共3页
针对机械故障自动识别问题,提出一种结合梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)与一维卷积神经网络(Convolutional Neural Networks,CNN)的机械故障声音自动识别方法,并通过实验验证该方法的有效性。实验结果表明... 针对机械故障自动识别问题,提出一种结合梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)与一维卷积神经网络(Convolutional Neural Networks,CNN)的机械故障声音自动识别方法,并通过实验验证该方法的有效性。实验结果表明,该方法在机械故障声音识别中具有较高的准确率、精确率及召回率,能够有效识别故障案例。 展开更多
关键词 机械故障 声音识别 梅尔频率系数(mfcc) 卷积神经网络(CNN)
下载PDF
基于MFCC和HMM的语音识别优化方法研究
3
作者 郭佳淇 张继通 《电声技术》 2024年第10期83-85,共3页
为探究基于梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCC)和隐马尔可夫模型(Hidden Markov Model,HMM)的语音识别优化方法,首先探讨语音识别系统的基本框架设计,其次分析MFCC特征提取方法,再次引入期望最大化(Expectatio... 为探究基于梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCC)和隐马尔可夫模型(Hidden Markov Model,HMM)的语音识别优化方法,首先探讨语音识别系统的基本框架设计,其次分析MFCC特征提取方法,再次引入期望最大化(Expectation Maximization,EM)算法优化HMM参数,最后利用THCHS-30数据集进行实验验证。结果表明,引入EM算法优化HMM,可有效克服传统HMM在复杂语音环境下的识别困难问题,显著提升系统的识别精度和健壮性。 展开更多
关键词 语音识别 梅尔频率系数(mfcc) 隐马尔可夫模型(HMM) 期望最大化(EM)
下载PDF
藏语语音处理中对MFCC参数提取的研究 被引量:1
4
作者 张金溪 徐慧 李照耀 《无线互联科技》 2012年第11期141-141,共1页
本文在掌握了MFCC参数提取的理论基础上,对基元的选择、HMM建模进行了深入学习与探索,在HTK工具的帮助下完成了MFCC参数的提取,为藏语语音识别系统、藏语语音合成系统的实现奠定了一定的基础。
关键词 梅尔频谱系数(mfcc) mfcc参数提取 HMM建模
下载PDF
语音识别的MFCC算法研究 被引量:2
5
作者 熊伟 罗云贵 《现代商贸工业》 2010年第3期291-292,共2页
详细介绍了一种在语音识别中取得一定良好效果的Mel倒谱提取的改进算法。在语音识别系统中,MFCC参数是经常使用的特征参数之一。MFCC参数主要描述了表征声道特性的谱包络特征,而忽略了基音频率对它的影响。然而基音频率会影响MFCC参数... 详细介绍了一种在语音识别中取得一定良好效果的Mel倒谱提取的改进算法。在语音识别系统中,MFCC参数是经常使用的特征参数之一。MFCC参数主要描述了表征声道特性的谱包络特征,而忽略了基音频率对它的影响。然而基音频率会影响MFCC参数对声道特性的准确描述,进一步影响语音识别系统的性能。提出了一种MFCC的改进参数,该参数并不直接对语音短时幅度谱进行提取,而是首先对幅度谱进行平滑,在谱包络的基础上计算MFCC参数,从而降低基音频率对其的影响。 展开更多
关键词 语音识别 梅尔系数(mfcc) 端点检测
下载PDF
融合倒谱特征的脑电(EEG)情感分类 被引量:7
6
作者 周奕隽 李冬冬 +1 位作者 王喆 高大启 《计算机工程与应用》 CSCD 北大核心 2020年第21期164-169,共6页
近年来,通过分析脑电图(EEG)信号来实现情感识别的课题越来越被研究者所重视。为了丰富特征的表示能力,获得更高的情感识别分类准确率,尝试将语音信号特征梅尔频率倒谱系数MFCC应用于脑电信号。在对EEG信号小波变换的基础上将提取得到的... 近年来,通过分析脑电图(EEG)信号来实现情感识别的课题越来越被研究者所重视。为了丰富特征的表示能力,获得更高的情感识别分类准确率,尝试将语音信号特征梅尔频率倒谱系数MFCC应用于脑电信号。在对EEG信号小波变换的基础上将提取得到的MFCC特征与EEG特征相互融合,通过利用深度残差网络(ResNet18)的特性进行情感分类识别。实验结果表明,比起传统的单一利用EEG特征,添加了MFCC特征使得情感维度Arousal和Valence两者的识别准确率分别提升了6%和4%,达到了86.01%和85.46%,从而提升了情感的识别准确度。 展开更多
关键词 脑电信号 梅尔系数(mfcc) 特征融合 深度残差网络
下载PDF
用于说话人识别的MFCC的改进算法 被引量:8
7
作者 张伟伟 杨鼎才 《电子测量技术》 2009年第8期118-121,共4页
在说话人识别系统中,MFCC参数是使用最多的特征参数之一。MFCC参数主要描述了表征声道特性的谱包络特征,而忽略了基音频率对它的影响。基音频率会影响MFCC参数对声道特性的准确描述,进而影响说话人识别系统的性能。本文提出了一种基于... 在说话人识别系统中,MFCC参数是使用最多的特征参数之一。MFCC参数主要描述了表征声道特性的谱包络特征,而忽略了基音频率对它的影响。基音频率会影响MFCC参数对声道特性的准确描述,进而影响说话人识别系统的性能。本文提出了一种基于平滑幅度谱包络的MFCC的改进参数,该参数不直接对语音短时幅度谱进行提取,而是先对幅度谱进行平滑,在谱包络的基础上计算MFCC参数,以降低基音频率对其的影响。 展开更多
关键词 说话人识别 梅尔系数(mfcc) 基音频率
下载PDF
基于MFCC的汽车敲击异响识别 被引量:3
8
作者 黄凯 郑瑶辰 邓兆祥 《振动与冲击》 EI CSCD 北大核心 2022年第13期275-282,共8页
现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量... 现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量,基于最大似然估计法构建其联合概率分布高斯混合模型(Gaussian mixture model,GMM),从而针对未知实测异响信号可利用该GMM模型进行似然判别。指出了说话人识别技术与敲击异响识别的不同之处即Mel三角滤波器个数和离散余弦变换输出系数个数的选取方式,并对方法的可行性进行分析,最后试验加以验证。结果显示此方法的识别率达100%,拒绝率达100%以上,为汽车异响的客观评价方法打下基础。 展开更多
关键词 说话人识别 敲击异响 梅尔系数(mfcc) 高斯混合模型(GMM)
下载PDF
基于MFCC特征和GWO-SVM的托辊故障诊断 被引量:4
9
作者 贺志军 李军霞 +2 位作者 张伟 樊文瑞 李振华 《机床与液压》 北大核心 2022年第15期188-193,共6页
针对目前带式输送机托辊故障诊断方法存在接触式测量、准确率低、井下大范围检测困难等问题,提出了一种基于MFCC特征和参数优化SVM的托辊故障诊断方法。利用变分模态分解(VMD)将采集到的托辊声音信号分解为若干本征模态分量(IMF),并基... 针对目前带式输送机托辊故障诊断方法存在接触式测量、准确率低、井下大范围检测困难等问题,提出了一种基于MFCC特征和参数优化SVM的托辊故障诊断方法。利用变分模态分解(VMD)将采集到的托辊声音信号分解为若干本征模态分量(IMF),并基于包络熵和峭度组成的复合指标优选IMF分量;提取所选分量的梅尔倒频谱系数(MFCC)作为特征,利用灰狼优化算法(GWO)优化SVM参数;将样本特征向量输入GWO-SVM中进行故障分类。结果表明:对于正常托辊、托辊内圈故障、托辊外圈故障、托辊卡死4种工况,该方法故障识别平均准确率在95%以上。与单一指标相比,复合指标提取的IMF分量故障特性代表性更好;与其他优化算法相比,该方法的识别准确率更高,分类速度更快。 展开更多
关键词 声音信号 梅尔频率系数(mfcc) 托辊 灰狼算法 故障诊断
下载PDF
基于MFCC声音特征信号提取的托辊故障诊断
10
作者 郭洁 井庆贺 +3 位作者 闫寿庆 王鑫 谢苗 吴意兵 《中国安全科学学报》 CAS CSCD 北大核心 2023年第S02期116-121,共6页
为监测托辊健康运行状态,通过现场试验的方式提取了托辊正常音频信号与故障音频信号。针对提取的音频信号中包含有大量噪声的问题,提出一种改进的小波阈值去噪方法,该方法有效滤除了音频信号中的噪声,为信号的后期特征提取奠定了基础。... 为监测托辊健康运行状态,通过现场试验的方式提取了托辊正常音频信号与故障音频信号。针对提取的音频信号中包含有大量噪声的问题,提出一种改进的小波阈值去噪方法,该方法有效滤除了音频信号中的噪声,为信号的后期特征提取奠定了基础。为进一步研究正常音频信号与故障音频信号的特性差异性,利用梅尔倒谱系数(MFCC)特征提取法,得出了能明显观测到托辊正常状态与故障状态差异性的梅尔倒谱系数特征表征图。结果表明:故障音频信号时域图与频谱图比正常音频信号波动更加剧烈;托辊正常音频信号的梅尔倒谱系数特性表征图比故障音频信号的起始幅值高,且幅值下降更迟缓。 展开更多
关键词 托辊故障 故障音频 小波阈值去噪 滤波器 梅尔系数(mfcc)
下载PDF
基于鲁棒主成分分析和MFCC反复结构的歌声分离方法
11
作者 熊天 张天骐 +1 位作者 闻斌 吴超 《声学技术》 CSCD 北大核心 2023年第6期794-803,共10页
针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效... 针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效地改善了鲁棒主成分分析对歌声分离不完全和梅尔频率倒谱系数反复结构歌声在低频处分离不佳的问题。首先使用鲁棒主成分分析将混合音乐信号分解为低秩矩阵和稀疏矩阵,然后分别对其提取梅尔频率倒谱系数特征参数并且对其进行相似运算,构建相似矩阵及建立梅尔频率倒谱系数反复结构模型并通过反复结构模型分别得到低秩矩阵和稀疏矩阵相关的掩蔽矩阵,最后根据构建的掩蔽矩阵模型以及傅里叶逆变换得到背景音乐和歌声。在公开数据集上进行了实验,实验结果表明本文算法在歌声分离性能上与比较算法相比,平均信号干扰比值最高有接近7 dB的提高。 展开更多
关键词 鲁棒主成分分析(RPCA) 梅尔频率系数(mfcc) 歌声伴奏分离 反复结构
下载PDF
基于MFCC均值特征的电台语言类节目相似度比对算法研究
12
作者 聂晨淅 《电声技术》 2022年第4期50-53,58,共5页
为了提高广播语言类节目的播出安全,提出一种基于梅尔频率倒谱系数(Mel-scale Frequency Cepstral Coefficients,MFCC)的算法,对两段音频信号进行相似度比对。通过对音频频谱特征提取得到均值特征参数,再计算两者的特征参数矩阵的欧式距... 为了提高广播语言类节目的播出安全,提出一种基于梅尔频率倒谱系数(Mel-scale Frequency Cepstral Coefficients,MFCC)的算法,对两段音频信号进行相似度比对。通过对音频频谱特征提取得到均值特征参数,再计算两者的特征参数矩阵的欧式距离,根据欧氏距离的大小判定两段音频的相似度来完成对比任务。实践证明,该方法对于语言类音频比对具有较高的准确性。 展开更多
关键词 播出安全 特征提取 梅尔频率系数(mfcc) 欧氏距离 音频比对
下载PDF
基于MFCC的空中交通管制语音指令的特征提取研究
13
作者 王兴林 《电声技术》 2023年第6期68-72,共5页
随着人工智能技术的不断应用,智能安全与智慧民航不断深入发展,通过科技手段提高空中交通飞行安全成为全球民航的共同选择。空中交通管制语音数据作为民航新型生产要素,对语音信号进行深入研究并合理运用,对于提高飞行安全具有重要意义... 随着人工智能技术的不断应用,智能安全与智慧民航不断深入发展,通过科技手段提高空中交通飞行安全成为全球民航的共同选择。空中交通管制语音数据作为民航新型生产要素,对语音信号进行深入研究并合理运用,对于提高飞行安全具有重要意义。文章介绍空中交通管制指令的基本要求,详细分析语音信号特征提取的各个环节,通过梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)提取语音信号的特征,再使用高斯混合模型(Gaussian Mixture Model,GMM)进行训练和分类,从而实现语音信号的识别,具有一定的实际运用价值。 展开更多
关键词 语音信号 特征提取 梅尔频率系数(mfcc) 高斯混合模型(GMM) 模型训练
下载PDF
试验环境水下声信号的特征提取方法
14
作者 王红滨 王永乐 +1 位作者 何鸣 薛垚 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第3期489-495,共7页
水下试验环境参数的反演是水声学研究领域的重要内容。而当前研究的关键是通过对水下声信号做特征提取从而获取参数信息。针对特征提取较难、模型很难拟合等问题。本文提出了一种试验环境水下声信号的特征提取方法。将水下声信号同时用... 水下试验环境参数的反演是水声学研究领域的重要内容。而当前研究的关键是通过对水下声信号做特征提取从而获取参数信息。针对特征提取较难、模型很难拟合等问题。本文提出了一种试验环境水下声信号的特征提取方法。将水下声信号同时用梅尔频谱倒谱系数及线性预测系数处理,两者运用特征加权组合方法得到新的特征矩阵;再应用映射插值算法对特征矩阵进行处理,获得适应神经网络输入的三通道矩阵。本文选取的网络模型为残差神经网络。利用实验室所录制的对河口水库数据集测试表明,本文提出的特征提取方法普遍优于仅利用梅尔频谱倒谱系数或线性预测系数的特征处理方法。利用单频矩形脉冲信号对环境进行深度5分类,准确率平均提升2%。利用线性调频信号对环境进行深度5分类,准确率平均提升2.03%。本文提出的特征提取方法对线性调频信号在深度分类任务下处理的结果要优于单频矩形脉冲信号处理的结果。 展开更多
关键词 环境反演 特征提取 梅尔频谱系数 线性预测系数 特征加权组合方法 残差神经网络 神经网络 水下声信号
下载PDF
基于音频特征的水车室工作状态异常检测 被引量:1
15
作者 曾广栋 魏学锋 +2 位作者 何林 孙长江 张旋 《水电能源科学》 北大核心 2024年第8期168-172,共5页
水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采... 水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采用STFT、Log-Mel、MFCC等方法对音频数据进行了预处理,建立了基于音频数据的异常检测模型,并对溪洛渡水电站水车室工作状态进行了异常检测。结果表明,Log-Mel方法具有有效性。研究结果不仅降低了异常检测的成本,还为水电机组的健康监测提供了参考。 展开更多
关键词 音频数据 水车室 STFT Log-Mel 梅尔频率频谱系数(mfcc) 时域特征 支持向量机
下载PDF
基于声音特征的隧道衬砌空洞识别方法研究
16
作者 代晓景 暴学志 +2 位作者 柴雪松 周城光 阎兆立 《声学技术》 CSCD 北大核心 2024年第1期135-141,共7页
目前隧道衬砌空洞检测以人工敲击判断为主,检测过程中由于受到检测人员水平、注意力等主观因素影响,检测结果存在较大不确定性,因此有必要研制一种智能化的检测装置实现空洞自动识别。文章开展了衬砌空洞敲击回声智能识别算法研究,通过... 目前隧道衬砌空洞检测以人工敲击判断为主,检测过程中由于受到检测人员水平、注意力等主观因素影响,检测结果存在较大不确定性,因此有必要研制一种智能化的检测装置实现空洞自动识别。文章开展了衬砌空洞敲击回声智能识别算法研究,通过提取隧道衬砌冲击回波的梅尔倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)作为特征,针对敲击回声脉冲信号长度不一的特点,提出了变帧长MFCC优化算法,并面向小样本条件,建立了支持向量机(Support Vector Machine,SVM)的识别模型。试验结果表明,该模型对衬砌空洞识别准确率可达89.9%。 展开更多
关键词 隧道衬砌空洞 声学信号处理 梅尔系数(mfcc) 支持向量机(SVM)
下载PDF
基于LSTM模型的音乐推荐系统研究
17
作者 范凯燕 胡彦红 《电声技术》 2024年第9期136-138,共3页
随着音乐推荐技术的快速发展,如何提升音乐推荐系统的准确性和用户满意度成为研究的重点。研究一种结合梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCC)、长短期记忆(Long Short-Term Memory,LSTM)网络、内容推荐方法的音... 随着音乐推荐技术的快速发展,如何提升音乐推荐系统的准确性和用户满意度成为研究的重点。研究一种结合梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCC)、长短期记忆(Long Short-Term Memory,LSTM)网络、内容推荐方法的音乐推荐系统,并通过MATLAB平台进行测试。结果表明,该推荐系统表现良好。 展开更多
关键词 音乐推荐 梅尔频率系数(mfcc) 长短期记忆(LSTM) 内容推荐
下载PDF
基于用户语音情感分析的景区反馈评估方法
18
作者 胡辉 《电声技术》 2024年第10期95-97,共3页
提出一种基于用户语音情感分析的景区反馈评估方法。首先,构建一个面向景区评估的情感分析框架,采用梅尔频率倒谱系数(Mel Frequency Cepstral Coefficients,MFCC)提取语音特征。其次,利用长短期记忆(Long Short-Term Memory,LSTM)网络... 提出一种基于用户语音情感分析的景区反馈评估方法。首先,构建一个面向景区评估的情感分析框架,采用梅尔频率倒谱系数(Mel Frequency Cepstral Coefficients,MFCC)提取语音特征。其次,利用长短期记忆(Long Short-Term Memory,LSTM)网络对提取的特征进行情感极性分类,将情感分为积极、消极、中性。最后,在交互式情感二元动作捕捉(Interactive Emotional Dyadic Motion Capture,IEMOCAP)数据集上进行实验。实验结果显示,本方法在精确率、召回率、准确率等指标上均表现出色,特别是在中性情感分类中达到了较高的识别性能。 展开更多
关键词 语音情感分析 景区评估 梅尔频率系数(mfcc) 长短期记忆(LSTM)网络
下载PDF
基于频率段的语音识别算法设计与实现 被引量:1
19
作者 袁正午 肖旺辉 《计算机工程与设计》 CSCD 北大核心 2011年第2期659-662,共4页
线性预测倒谱参数(LPCC)能很好的体现人的声道特性,而梅尔倒谱参数(MFCC)能很好的模拟人耳的听觉效应。针对MFCC在不同频率段的识别精度不一致和LPCC不能准确模拟人的听觉系统问题,将MFCC参数和IMFCC参数分别作为语音不同频率段的特征参... 线性预测倒谱参数(LPCC)能很好的体现人的声道特性,而梅尔倒谱参数(MFCC)能很好的模拟人耳的听觉效应。针对MFCC在不同频率段的识别精度不一致和LPCC不能准确模拟人的听觉系统问题,将MFCC参数和IMFCC参数分别作为语音不同频率段的特征参数,结合线性预测参数(LPCC),均衡滤波器的分布,完整覆盖到整个频率段范围。将梅尔倒谱参数和线性预测参数结合起来作为语音识别的特征提取参数。实验结果表明,改进之后的算法从效率上和识别率上都有不同程度的提高。 展开更多
关键词 线性预测参数(LPCC) 梅尔系数(mfcc) 梅尔系数(Imfcc) 语音识别 特征提取
下载PDF
法庭语音比对中话者自身变化性建模方法研究 被引量:2
20
作者 王华朋 姜囡 +1 位作者 刘恩 晁亚东 《计算机工程与应用》 CSCD 北大核心 2019年第8期110-115,214,共7页
针对法庭说话人识别中待鉴定人员语音样本不足的问题,提出了一种新的对说话人自身变化性建模的替代性方法以及相应的方差控制算法。使用同条件下的参考数据库构建识别系统的多个相同说话人得分模型,代替检验需要的多个非同期的带检验人... 针对法庭说话人识别中待鉴定人员语音样本不足的问题,提出了一种新的对说话人自身变化性建模的替代性方法以及相应的方差控制算法。使用同条件下的参考数据库构建识别系统的多个相同说话人得分模型,代替检验需要的多个非同期的带检验人员语音样本比较时的得分模型,以获得能反映说话人自身变化性的统计模型。基于目前最新的法庭证据评估的似然比证据强度评估体系,使用MFCC(Mel Frequency Cepstral Coefficients)和GFCC(Gammatone Frequency Cepstral Coefficients)特征对该方法的有效性进行了验证,并对上述特征进行了特征级和决策级融合。实验结果表明:该方法在纯净语音环境和噪声环境下都具有很高的识别率和稳定性,并且特征级融合能进一步提高识别系统的性能。 展开更多
关键词 似然比 证据强度 建模 梅尔频率系数(mfcc) 伽马通频率系数(GFCC)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部