以PPTC(Potsdam Propeller Test Case)桨为研究对象,探索了螺旋桨梢涡及梢涡空泡的数值模拟方法。通过梢涡区域的划分及网格加密,对螺旋桨无空化流场进行了数值模拟,成功捕获了梢涡;然后基于均质混合流模型和Zwart-Gerber-Belamri空化...以PPTC(Potsdam Propeller Test Case)桨为研究对象,探索了螺旋桨梢涡及梢涡空泡的数值模拟方法。通过梢涡区域的划分及网格加密,对螺旋桨无空化流场进行了数值模拟,成功捕获了梢涡;然后基于均质混合流模型和Zwart-Gerber-Belamri空化模型对空化流场进行了数值模拟;并将计算结果与试验数据进行了广泛的比较和分析,以校验计算网格和计算方法。研究表明:无论片空泡还是梢涡空泡的计算结果均与试验观测吻合良好;同时,所得螺旋桨推力和扭矩系数也与试验值符合良好;有效地实现了梢涡捕捉及梢涡空泡模拟。同时指出,水中含气率对推力和扭矩系数的影响大于空泡形态。展开更多
文摘以PPTC(Potsdam Propeller Test Case)桨为研究对象,探索了螺旋桨梢涡及梢涡空泡的数值模拟方法。通过梢涡区域的划分及网格加密,对螺旋桨无空化流场进行了数值模拟,成功捕获了梢涡;然后基于均质混合流模型和Zwart-Gerber-Belamri空化模型对空化流场进行了数值模拟;并将计算结果与试验数据进行了广泛的比较和分析,以校验计算网格和计算方法。研究表明:无论片空泡还是梢涡空泡的计算结果均与试验观测吻合良好;同时,所得螺旋桨推力和扭矩系数也与试验值符合良好;有效地实现了梢涡捕捉及梢涡空泡模拟。同时指出,水中含气率对推力和扭矩系数的影响大于空泡形态。