Rainfall, runoff(surface runoff and interflow) and soil loss were recorded from 2002 to2005 in an experiment with four treatments on sloping red soil land in southern China. Treatments consisted of bare sloping ground...Rainfall, runoff(surface runoff and interflow) and soil loss were recorded from 2002 to2005 in an experiment with four treatments on sloping red soil land in southern China. Treatments consisted of bare sloping ground(control check, CK),interplanting with soybean in spring or radish in autumn(I), level terrace(i.e., grass planted on the riser and bunds built at the edge of a bench terrace)(II), and level terraces of orchards with Bahia grass planted on the riser(III). The surface runoff and erosion in treatment II and III during the four years were low despite the occurrence of potentially erosive rains. By contrast, the CK plot had both the highest surface runoff coefficient and the highest sediment yield among all the plots. The surface runoff and soil erosion of the CK plot significantly differed from that of the treatment plots(p < 0.05). Additionally,Significant differences between the interflow of the CK plot and that of the treatment plots was found from April to August(p < 0.05). However, no significant differences between the CK and treatment plots were found from January to March and September to December. The order of the plots in terms of surface runoff coefficients and soil losses was: CK > I > III > II, whereas their order in terms of interflow was II > III > I > CK. The effects of treatment II were excellent, indicating that level terrace(i.e., grass planted on the riser and bunds built at the edge of a bench terrace) can be an excellent practice for soil and water conservation on sloping red soil land. Soil loss in southern China can be reduced through the widespread use of this approach.展开更多
Wood debris is an important component of mountain streams. It causes serious damage and renders difficulty of water resource management in Taiwan. In this study, the quantity of wood debris and variation of migratory ...Wood debris is an important component of mountain streams. It causes serious damage and renders difficulty of water resource management in Taiwan. In this study, the quantity of wood debris and variation of migratory wood debris during flood events were examined. The downstream of Gaoshan Creek and Qijiawan Creek, located at Central Taiwan, was selected as the study area. The distribution and dynamic of wood debris in a high gradient headwater catchment were quantified using field surveys. A formula of critical depth for wood debris entrainment was used to evaluate the wood debris migration during three flooding events. In the study area, wood abundance and unit volume increased downstream, and wood density decreased downstream within a channel network. The channel morphology, riparian vegetation, and wood debris characteristics were found to influence the wood storage. As a result, the wood debris has an irregular accumulative distribution in the steep stream, and it migrates easily in the stream because of a high flow discharge. Strong relationships between the channel width and wood debris variables are discovered. Moreover, wood debris has a tendency to accumulate at sites with low stream power and wood debris dams, topographical notches, and unique geological structures. Our findings assist in the understanding of the effects of channel characteristics on distributions of wood debris in steep stream systems.展开更多
基金funded by the National Science and Technique Sustentation Project (Grant No. 2012BAJ25B01)
文摘Rainfall, runoff(surface runoff and interflow) and soil loss were recorded from 2002 to2005 in an experiment with four treatments on sloping red soil land in southern China. Treatments consisted of bare sloping ground(control check, CK),interplanting with soybean in spring or radish in autumn(I), level terrace(i.e., grass planted on the riser and bunds built at the edge of a bench terrace)(II), and level terraces of orchards with Bahia grass planted on the riser(III). The surface runoff and erosion in treatment II and III during the four years were low despite the occurrence of potentially erosive rains. By contrast, the CK plot had both the highest surface runoff coefficient and the highest sediment yield among all the plots. The surface runoff and soil erosion of the CK plot significantly differed from that of the treatment plots(p < 0.05). Additionally,Significant differences between the interflow of the CK plot and that of the treatment plots was found from April to August(p < 0.05). However, no significant differences between the CK and treatment plots were found from January to March and September to December. The order of the plots in terms of surface runoff coefficients and soil losses was: CK > I > III > II, whereas their order in terms of interflow was II > III > I > CK. The effects of treatment II were excellent, indicating that level terrace(i.e., grass planted on the riser and bunds built at the edge of a bench terrace) can be an excellent practice for soil and water conservation on sloping red soil land. Soil loss in southern China can be reduced through the widespread use of this approach.
基金the Taiwan Science Council for financially supporting this research under Contract No.NSC96-2625-Z005-001-MY3
文摘Wood debris is an important component of mountain streams. It causes serious damage and renders difficulty of water resource management in Taiwan. In this study, the quantity of wood debris and variation of migratory wood debris during flood events were examined. The downstream of Gaoshan Creek and Qijiawan Creek, located at Central Taiwan, was selected as the study area. The distribution and dynamic of wood debris in a high gradient headwater catchment were quantified using field surveys. A formula of critical depth for wood debris entrainment was used to evaluate the wood debris migration during three flooding events. In the study area, wood abundance and unit volume increased downstream, and wood density decreased downstream within a channel network. The channel morphology, riparian vegetation, and wood debris characteristics were found to influence the wood storage. As a result, the wood debris has an irregular accumulative distribution in the steep stream, and it migrates easily in the stream because of a high flow discharge. Strong relationships between the channel width and wood debris variables are discovered. Moreover, wood debris has a tendency to accumulate at sites with low stream power and wood debris dams, topographical notches, and unique geological structures. Our findings assist in the understanding of the effects of channel characteristics on distributions of wood debris in steep stream systems.