期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
梯度有偏情形非光滑问题NAG的个体收敛性 被引量:2
1
作者 刘宇翔 程禹嘉 陶卿 《软件学报》 EI CSCD 北大核心 2020年第4期1051-1062,共12页
随机优化方法已经成为处理大规模正则化和深度学习优化问题的首选方法,其收敛速率的获得通常都建立在目标函数梯度无偏估计的基础上,但对机器学习问题来说,很多现象都导致了梯度有偏情况的出现.与梯度无偏情形不同的是,著名的Nesterov... 随机优化方法已经成为处理大规模正则化和深度学习优化问题的首选方法,其收敛速率的获得通常都建立在目标函数梯度无偏估计的基础上,但对机器学习问题来说,很多现象都导致了梯度有偏情况的出现.与梯度无偏情形不同的是,著名的Nesterov加速算法NAG(Nesterov accelerated gradient)会逐步累积每次迭代中的梯度偏差,从而导致不能获得最优的收敛速率甚至收敛性都无法保证.近期的研究结果表明,NAG方法也是求解非光滑问题投影次梯度关于个体收敛的加速算法,但次梯度有偏对其影响的研究未见报道.针对非光滑优化问题,证明了在次梯度偏差有界的情况下,NAG能够获得稳定的个体收敛界,而当次梯度偏差按照一定速率衰减时,NAG仍然可获得最优的个体收敛速率.作为应用,得到了一种无需精确计算投影的投影次梯度方法,可以在保持收敛性的同时较快地达到稳定学习的精度.实验验证了理论分析的正确性及非精确方法的性能. 展开更多
关键词 机器学习 Nesterov加速方法 随机优化 梯度估计有偏 个体收敛
下载PDF
梯度有偏随机DA优化方法的个体收敛界分析
2
作者 张梦晗 汪海 +1 位作者 刘欣 鲍蕾 《计算机工程》 CAS CSCD 北大核心 2019年第10期203-207,214,共6页
样本不满足独立同分布会使梯度估计在迭代过程中存在偏差,且最优的个体收敛界在噪声的干扰下无法确定。为此,提出一种线性插值随机对偶平均(DA)优化方法。给出DA方法收敛性的证明,在梯度估计有偏的基础上,求解得到一种线性插值DA随机优... 样本不满足独立同分布会使梯度估计在迭代过程中存在偏差,且最优的个体收敛界在噪声的干扰下无法确定。为此,提出一种线性插值随机对偶平均(DA)优化方法。给出DA方法收敛性的证明,在梯度估计有偏的基础上,求解得到一种线性插值DA随机优化方法不产生累积偏差的个体收敛界,以保证正则化损失函数结构下优化方法的个体收敛精度。实验结果表明,与随机加速方法相比,该方法具有较快的个体收敛速率与较高的收敛精度。 展开更多
关键词 对偶平均方法 随机优化 个体收敛性 梯度有偏估计 最优收敛速率
下载PDF
机器学习随机优化方法的个体收敛性研究综述 被引量:6
3
作者 陶卿 马坡 +1 位作者 张梦晗 陶蔚 《数据采集与处理》 CSCD 北大核心 2017年第1期17-25,共9页
随机优化方法是求解大规模机器学习问题的主流方法,其研究的焦点问题是算法是否达到最优收敛速率与能否保证学习问题的结构。目前,正则化损失函数问题已得到了众多形式的随机优化算法,但绝大多数只是对迭代进行平均的输出方式讨论了收... 随机优化方法是求解大规模机器学习问题的主流方法,其研究的焦点问题是算法是否达到最优收敛速率与能否保证学习问题的结构。目前,正则化损失函数问题已得到了众多形式的随机优化算法,但绝大多数只是对迭代进行平均的输出方式讨论了收敛速率,甚至无法保证最为典型的稀疏结构。与之不同的是,个体解能很好保持稀疏性,其最优收敛速率已经作为open问题被广泛探索。另外,随机优化普遍采用的梯度无偏假设往往不成立,加速方法收敛界中的偏差在有偏情形下会随迭代累积,从而无法应用。本文对一阶随机梯度方法的研究现状及存在的问题进行综述,其中包括个体收敛速率、梯度有偏情形以及非凸优化问题,并在此基础上指出了一些值得研究的问题。 展开更多
关键词 机器学习 随机优化 个体收敛性 有偏梯度估计 非凸问题
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部