Internal magnetic gradient plays a significant role in Nuclear Magnetic Resonance(NMR)measurements of fluid saturated porous media.The quantitative characterization and application of this physical phenomenon could ef...Internal magnetic gradient plays a significant role in Nuclear Magnetic Resonance(NMR)measurements of fluid saturated porous media.The quantitative characterization and application of this physical phenomenon could effectively improve the accuracy of NMR measurements and interpretations.In this paper,by using the equivalent magnetic dipole method,the three-dimensional distribution of internal induced magnetic field and its gradients in the randomly packed water saturated glass beads are quantitatively characterized.By simulating the diffusive motion of water molecules in porous media with random walk method,the computational dephasing effects equation related to internal gradients is deduced.Thereafter,the echo amplitudes are obtained and the corresponding T2-G spectrum is also inverted.For the sake of verifying the simulation results,an experiment is carried out using the Halbach core analyzing system(B0=0.18 T,G=2.3 T/m)to detect the induced internal field and gradients.The simulation results indicate the equivalent internal gradient is a distribution of 0.1-0.3 T/m,which matched well with the experimental results.展开更多
This paper investigates the flux distributions of the electron photo-detached from Hion localized in a gradient electric field. In contrast with the photodetachment in the uniform electric field [Phys, Rev. A 40 (198...This paper investigates the flux distributions of the electron photo-detached from Hion localized in a gradient electric field. In contrast with the photodetachment in the uniform electric field [Phys, Rev. A 40 (1989) 4983], where only two electron trajectories interfere at each given point on a detector, for the photodetachment in a gradient electric field, the electrons waves can travel along multiple paths from the negative ion to a given point on the detector plane, which makes the electron flux distributions on the detector plane become much complex. Using the semi-classicaJ theory, we put forward a formula for calculating the electron flux. Our calculation results suggest that the electron flux distributions on a given detector plane is not only related to the propagation time of the detached electron, but also related to the detached electron's energy. With the increase of the detached electron's energy, the oscillating region in the electron flux distributions becomes enlarged and the oscillating structure in the flux distributions becomes much more complicated. This study will guide future experiment research on the photodetachment microscopy of the negative ions in the presence of non-uniform external fields.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41074102 and 41130417)"111 Program"(Grant No.B13010)Program for Changjiang Scholars and Innovative Research Team in University
文摘Internal magnetic gradient plays a significant role in Nuclear Magnetic Resonance(NMR)measurements of fluid saturated porous media.The quantitative characterization and application of this physical phenomenon could effectively improve the accuracy of NMR measurements and interpretations.In this paper,by using the equivalent magnetic dipole method,the three-dimensional distribution of internal induced magnetic field and its gradients in the randomly packed water saturated glass beads are quantitatively characterized.By simulating the diffusive motion of water molecules in porous media with random walk method,the computational dephasing effects equation related to internal gradients is deduced.Thereafter,the echo amplitudes are obtained and the corresponding T2-G spectrum is also inverted.For the sake of verifying the simulation results,an experiment is carried out using the Halbach core analyzing system(B0=0.18 T,G=2.3 T/m)to detect the induced internal field and gradients.The simulation results indicate the equivalent internal gradient is a distribution of 0.1-0.3 T/m,which matched well with the experimental results.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11374133 and 11074104a Project of Shandong Province Higher Educational Science and Technology Program of China under Grant No.J13LJ04
文摘This paper investigates the flux distributions of the electron photo-detached from Hion localized in a gradient electric field. In contrast with the photodetachment in the uniform electric field [Phys, Rev. A 40 (1989) 4983], where only two electron trajectories interfere at each given point on a detector, for the photodetachment in a gradient electric field, the electrons waves can travel along multiple paths from the negative ion to a given point on the detector plane, which makes the electron flux distributions on the detector plane become much complex. Using the semi-classicaJ theory, we put forward a formula for calculating the electron flux. Our calculation results suggest that the electron flux distributions on a given detector plane is not only related to the propagation time of the detached electron, but also related to the detached electron's energy. With the increase of the detached electron's energy, the oscillating region in the electron flux distributions becomes enlarged and the oscillating structure in the flux distributions becomes much more complicated. This study will guide future experiment research on the photodetachment microscopy of the negative ions in the presence of non-uniform external fields.