In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in ...In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in the background and one of its core problems is to solve the optimization problem. Unlike traditional batch algorithm, stochastic gradient descent algorithm in each iteration calculation, the optimization of a single sample point only losses could greatly reduce the memory overhead. The experiment illustrates the feasibility of our proposed approach.展开更多
The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this...The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this parameter in engineering practice.In this study,we aimed to develop a non-parametric ensemble artificial intelligence(AI)approach to calculate the Es of soft clay in contrast to the traditional regression models proposed in previous studies.A gradient boosted regression tree(GBRT)algorithm was used to discern the non-linear pattern between input variables and the target response,while a genetic algorithm(GA)was adopted for tuning the GBRT model's hyper-parameters.The model was tested through 10-fold cross validation.A dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the accuracy of the new model5 s predictions.The mean squared error and correlation coefficient of the optimum GBRT model applied to the testing set were 0.13 and 0.91,respectively,indicating that the proposed machine learning(ML)model has great potential to improve the prediction of Es for soft clay.A comparison of the performance of empirical formulas and the proposed ML method for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive deformation of geotechnical systems.This model,however,cannot be directly applied to the prediction of Es in other sites due to its site specificity.This problem can be solved by retraining the model using local data.This study provides a useful reference for future multi-parameter prediction of soil behavior.展开更多
The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of...The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of time-series, time-series forecasting model becomes more complicated, and consequently great concern has been drawn to the techniques in designing the forecasting model. A modeling method which is easy to use by engineers and may generate good results is in urgent need. In this paper, a gradient-boost AR ensemble learning algorithm (AREL) is put forward. The effectiveness of AREL is assessed by theoretical analyses, and it is demonstrated that this method can build a strong predictive model by assembling a set of AR models. In order to avoid fitting exactly any single training example, an insensitive loss function is introduced in the AREL algorithm, and accordingly the influence of random noise is reduced. To further enhance the capability of AREL algorithm for non-stationary time-series, improve the robustness of algorithm, discourage overfitting, and reduce sensitivity of algorithm to parameter settings, a weighted kNN prediction method based on AREL algorithm is presented. The results of numerical testing on real data demonstrate that the proposed modeling method and prediction method are effective.展开更多
文摘In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in the background and one of its core problems is to solve the optimization problem. Unlike traditional batch algorithm, stochastic gradient descent algorithm in each iteration calculation, the optimization of a single sample point only losses could greatly reduce the memory overhead. The experiment illustrates the feasibility of our proposed approach.
基金the National Natural Science Foundation of China(Nos.51608380 and 51538009)the Key Innovation Team Program of the Innovation Talents Promotion Plan by Ministry of Science and Technology of China(No.2016RA4059)the Specific Consultant Research Project of Shanghai Tunnel Engineering Company Ltd.(No.STEC/KJB/XMGL/0130),China。
文摘The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this parameter in engineering practice.In this study,we aimed to develop a non-parametric ensemble artificial intelligence(AI)approach to calculate the Es of soft clay in contrast to the traditional regression models proposed in previous studies.A gradient boosted regression tree(GBRT)algorithm was used to discern the non-linear pattern between input variables and the target response,while a genetic algorithm(GA)was adopted for tuning the GBRT model's hyper-parameters.The model was tested through 10-fold cross validation.A dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the accuracy of the new model5 s predictions.The mean squared error and correlation coefficient of the optimum GBRT model applied to the testing set were 0.13 and 0.91,respectively,indicating that the proposed machine learning(ML)model has great potential to improve the prediction of Es for soft clay.A comparison of the performance of empirical formulas and the proposed ML method for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive deformation of geotechnical systems.This model,however,cannot be directly applied to the prediction of Es in other sites due to its site specificity.This problem can be solved by retraining the model using local data.This study provides a useful reference for future multi-parameter prediction of soil behavior.
基金supported by the National Natural Science Foundation of China (Grant No. 60974101)Program for New Century Talents of Education Ministry of China (Grant No. NCET-06-0828)
文摘The forecasting of time-series data plays an important role in various domains. It is of significance in theory and application to improve prediction accuracy of the time-series data. With the progress in the study of time-series, time-series forecasting model becomes more complicated, and consequently great concern has been drawn to the techniques in designing the forecasting model. A modeling method which is easy to use by engineers and may generate good results is in urgent need. In this paper, a gradient-boost AR ensemble learning algorithm (AREL) is put forward. The effectiveness of AREL is assessed by theoretical analyses, and it is demonstrated that this method can build a strong predictive model by assembling a set of AR models. In order to avoid fitting exactly any single training example, an insensitive loss function is introduced in the AREL algorithm, and accordingly the influence of random noise is reduced. To further enhance the capability of AREL algorithm for non-stationary time-series, improve the robustness of algorithm, discourage overfitting, and reduce sensitivity of algorithm to parameter settings, a weighted kNN prediction method based on AREL algorithm is presented. The results of numerical testing on real data demonstrate that the proposed modeling method and prediction method are effective.