In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and mat...In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.展开更多
TA2/TA15 graded structural material(GSM) was fabricated by the laser additive manufacturing(LAM) process. The chemical composition, microstructure and micro-hardness of the as-deposited GSM were investigated. The ...TA2/TA15 graded structural material(GSM) was fabricated by the laser additive manufacturing(LAM) process. The chemical composition, microstructure and micro-hardness of the as-deposited GSM were investigated. The results show that the TA2 part of exhibiting near-equiaxed grains was Widmanst?tten α-laths microstructure. The TA15 part containing large columnar grains was fine basket-weave microstructure. The graded zone was divided into four deposited layers with 3000 μm in thickness. As the distance from the TA2 part increases, the alloy element contents and the β phase volume fraction increase, the α phase volume fraction decreases and the microstructure shows the evolution from Widmanst?tten α-laths to basket-weave α-laths gradually. The micro-hardness increases from the TA2 part to the TA15 part due to the solid solution strengthening and grain boundary strengthening.展开更多
A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical prope...A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical properties of the as-deposited GSM were all characterized to investigate their variations along the deposition direction.The results indicate that from TA15 to TC11,the grain size decreases and a transition from columnar grains to equiaxed grains occurs.The content of alloy element alters greatly within a short distance,and the width of the mutation zone is 800μm.Both TA15 and TC11 regions exhibit basketweave microstructure withα-phase andβ-phase.However,during the transition from TA15 to TC11,theα-lath becomes fine,which leads to an increase in microhardness.The tensile test shows that the bonding strength at the interface is higher than the longitudinal strength of TA15,and the lateral elongation at the interface is higher than that of TA15 and TC11.展开更多
A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of i...A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of incubation, and could also remove 100% of fluorene, 98.93% of phenanthrene and 65.73% of pyrene within 3, 7 and 9 days, respectively. Twelve strains from six different genera were isolated from KO5-2 and only eight ones were able to utilize the TPH. The denaturing gradient gel electrophoresis(DGGE) was used to investigate the microbial community shifts in five different carbon sources(including TPH, saturated hydrocarbons, fluorene, phenanthrene and pyrene). The test results indicated that the community compositions of KO5-2 in carbon sources of TPH and saturated hydrocarbons, respectively, were roughly the same, while they were distinctive in the three different carbon sources of PAHs. Rhodococcus sp. and Pseudomonas sp. could survive in the five kinds of carbon sources. Bacillus sp., Sphingomonas sp. and Ochrobactrum sp. likely played key roles in the degradation of saturated hydrocarbons, PAHs and phenanthrene, respectively. This study showed that specific bacterial phylotypes were associated with different contaminants and complex interactions between bacterial species, and the medium conditions influenced the biodegradation capacity of the microbial communities involved in bioremediation processes.展开更多
Beams,plates,and shells,as the fundamental mechanical structures,are widely used in microelectromechanical systems(MEMS)and nanoelectromechanical systems(NEMS)as sensors,actuators,energy harvesters,and among others.De...Beams,plates,and shells,as the fundamental mechanical structures,are widely used in microelectromechanical systems(MEMS)and nanoelectromechanical systems(NEMS)as sensors,actuators,energy harvesters,and among others.Deeply understand the electromechanical coupling of these dielectric structures is of crucial for designing,fabricating,and optimizing practice devices in these systems.Herein we demonstrate the electromechanical coupling in flexoelectric circular plate,in which higher-order strain gradients were considered to extend the classical electromechanical properties to isotropic materials,in which the non-uniform distribution of the electric potential along the radial direction was considered.Analytical solutions for the vibration modes of the flexoelectric circular plates showed that the dynamic modes were totally different from the piezoelectric circular plates owing to the inversion symmetry breaking by the strain gradient.The electromechanical coupling dynamic modes are sensitive to bending,twisting modes owing to the sensitivity of the flexoelectric effect to bending.This work provides a fundamental understanding of the electromechanical coupling in flexoelectric circular plate,which is helpful in designing novel flexoelectric circular plate-based devices,such as flexoelectric mirrors.展开更多
基金Project(50975095)supported by the National Natural Science Foundation of ChinaProject(2012ZM0048)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.
基金Project(2010CB731705)supported by the National Basic Research Program of China
文摘TA2/TA15 graded structural material(GSM) was fabricated by the laser additive manufacturing(LAM) process. The chemical composition, microstructure and micro-hardness of the as-deposited GSM were investigated. The results show that the TA2 part of exhibiting near-equiaxed grains was Widmanst?tten α-laths microstructure. The TA15 part containing large columnar grains was fine basket-weave microstructure. The graded zone was divided into four deposited layers with 3000 μm in thickness. As the distance from the TA2 part increases, the alloy element contents and the β phase volume fraction increase, the α phase volume fraction decreases and the microstructure shows the evolution from Widmanst?tten α-laths to basket-weave α-laths gradually. The micro-hardness increases from the TA2 part to the TA15 part due to the solid solution strengthening and grain boundary strengthening.
基金financial supports from the National Natural Science Foundation of China(Nos.51875041,51875042)。
文摘A graded structural material(GSM)with a material transition from TA15 to TC11 was fabricated by wire arc additive manufacturing(WAAM)method.The grain morphology,chemical composition,microstructure and mechanical properties of the as-deposited GSM were all characterized to investigate their variations along the deposition direction.The results indicate that from TA15 to TC11,the grain size decreases and a transition from columnar grains to equiaxed grains occurs.The content of alloy element alters greatly within a short distance,and the width of the mutation zone is 800μm.Both TA15 and TC11 regions exhibit basketweave microstructure withα-phase andβ-phase.However,during the transition from TA15 to TC11,theα-lath becomes fine,which leads to an increase in microhardness.The tensile test shows that the bonding strength at the interface is higher than the longitudinal strength of TA15,and the lateral elongation at the interface is higher than that of TA15 and TC11.
基金supported by the Scientific Research Fund of Liaoning Provincial Education Department (L2014148)
文摘A hydrocarbon degrading bacterial consortium KO5-2 was isolated from oil-contaminated soil of Karamay in Xinjiang, China, which could remove 56.9% of 10 g/L total petroleum hydrocarbons(TPH) at 30 ℃ after 7 days of incubation, and could also remove 100% of fluorene, 98.93% of phenanthrene and 65.73% of pyrene within 3, 7 and 9 days, respectively. Twelve strains from six different genera were isolated from KO5-2 and only eight ones were able to utilize the TPH. The denaturing gradient gel electrophoresis(DGGE) was used to investigate the microbial community shifts in five different carbon sources(including TPH, saturated hydrocarbons, fluorene, phenanthrene and pyrene). The test results indicated that the community compositions of KO5-2 in carbon sources of TPH and saturated hydrocarbons, respectively, were roughly the same, while they were distinctive in the three different carbon sources of PAHs. Rhodococcus sp. and Pseudomonas sp. could survive in the five kinds of carbon sources. Bacillus sp., Sphingomonas sp. and Ochrobactrum sp. likely played key roles in the degradation of saturated hydrocarbons, PAHs and phenanthrene, respectively. This study showed that specific bacterial phylotypes were associated with different contaminants and complex interactions between bacterial species, and the medium conditions influenced the biodegradation capacity of the microbial communities involved in bioremediation processes.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122209,12072251,and 12102153)the Project B18040.
文摘Beams,plates,and shells,as the fundamental mechanical structures,are widely used in microelectromechanical systems(MEMS)and nanoelectromechanical systems(NEMS)as sensors,actuators,energy harvesters,and among others.Deeply understand the electromechanical coupling of these dielectric structures is of crucial for designing,fabricating,and optimizing practice devices in these systems.Herein we demonstrate the electromechanical coupling in flexoelectric circular plate,in which higher-order strain gradients were considered to extend the classical electromechanical properties to isotropic materials,in which the non-uniform distribution of the electric potential along the radial direction was considered.Analytical solutions for the vibration modes of the flexoelectric circular plates showed that the dynamic modes were totally different from the piezoelectric circular plates owing to the inversion symmetry breaking by the strain gradient.The electromechanical coupling dynamic modes are sensitive to bending,twisting modes owing to the sensitivity of the flexoelectric effect to bending.This work provides a fundamental understanding of the electromechanical coupling in flexoelectric circular plate,which is helpful in designing novel flexoelectric circular plate-based devices,such as flexoelectric mirrors.