Aims Understanding variation and coordination of leaf traits at multiscales along elevational gradients can help predict the likely responses of dominant species to climate change.We seek to determine the extent to wh...Aims Understanding variation and coordination of leaf traits at multiscales along elevational gradients can help predict the likely responses of dominant species to climate change.We seek to determine the extent to which variation in leaf stomatal,anatomical and morphological traits is associated with environmental factors,and whether ecological strategies of Cyclobalanopsis species shift with elevations.Methods In a tropical forest landscape in Jianfengling,South China,we determined leaf traits related to stomata,anatomy and morphology of six evergreen oak species(Cyclobalanopsis bambusaefolia,C.hui,C.patelliformis,C.fleuryi,C.tiaoloshanica and C.phanera)along a long elevational gradient(400–1400 m above sea level).Important Findings We found that stomatal density and stomatal pore index increased,whereas spongy mesophyll thickness to leaf thickness ratios decreased,significantly with elevation.The leaf area and leaf dry matter content increased and decreased,respectively,with elevation.Variations in stomatal,anatomical and morphological traits were mainly correlated to the mean annual temperature,mean annual sum precipitation and soil pH.At low and high elevations,the oak species exhibited strong stress tolerance combined with competition strategy,while they shifted toward more clearly the competitive strategy at intermediate elevations.And the changes in soil phosphorus concentration and soil pH along the elevation may drive the shift of ecological strategy.The results showed that the dominant oak species in tropical forests respond to environmental change by modulating traits at multiple levels,from that of the individual cell,through tissue and up to the whole leaf scale.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(41771522 and 41773071)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(GML2019ZD0408)+1 种基金the Biological Resources Service Network Initiative of Chinese Academy of Sciences(ZSSD-007)the Youth Innovation Promotion Association of CAS.
文摘Aims Understanding variation and coordination of leaf traits at multiscales along elevational gradients can help predict the likely responses of dominant species to climate change.We seek to determine the extent to which variation in leaf stomatal,anatomical and morphological traits is associated with environmental factors,and whether ecological strategies of Cyclobalanopsis species shift with elevations.Methods In a tropical forest landscape in Jianfengling,South China,we determined leaf traits related to stomata,anatomy and morphology of six evergreen oak species(Cyclobalanopsis bambusaefolia,C.hui,C.patelliformis,C.fleuryi,C.tiaoloshanica and C.phanera)along a long elevational gradient(400–1400 m above sea level).Important Findings We found that stomatal density and stomatal pore index increased,whereas spongy mesophyll thickness to leaf thickness ratios decreased,significantly with elevation.The leaf area and leaf dry matter content increased and decreased,respectively,with elevation.Variations in stomatal,anatomical and morphological traits were mainly correlated to the mean annual temperature,mean annual sum precipitation and soil pH.At low and high elevations,the oak species exhibited strong stress tolerance combined with competition strategy,while they shifted toward more clearly the competitive strategy at intermediate elevations.And the changes in soil phosphorus concentration and soil pH along the elevation may drive the shift of ecological strategy.The results showed that the dominant oak species in tropical forests respond to environmental change by modulating traits at multiple levels,from that of the individual cell,through tissue and up to the whole leaf scale.