This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial d...This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).展开更多
Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP),...Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP), which has been applied widely in predictability studies. In this study, the Differential Evolution(DE) algorithm, which is a derivative-free algorithm and has been applied to obtain CNOPs for exploring the uncertainty of terrestrial ecosystem processes, was employed to obtain the CNOPs for finite-dimensional optimization problems with ball constraint conditions using Burgers' equation. The aim was first to test if the CNOP calculated by the DE algorithm is similar to that computed by traditional optimization algorithms, such as the Spectral Projected Gradient(SPG2) algorithm. The second motive was to supply a possible route through which the CNOP approach can be applied in predictability studies in the atmospheric and oceanic sciences without obtaining a model adjoint system, or for optimization problems with non-differentiable cost functions. A projection skill was first explanted to the DE algorithm to calculate the CNOPs. To validate the algorithm, the SPG2 algorithm was also applied to obtain the CNOPs for the same optimization problems. The results showed that the CNOPs obtained by the DE algorithm were nearly the same as those obtained by the SPG2 algorithm in terms of their spatial distributions and nonlinear evolutions. The implication is that the DE algorithm could be employed to calculate the optimal values of optimization problems, especially for non-differentiable and nonlinear optimization problems associated with the atmospheric and oceanic sciences.展开更多
In this paper,a probe method for nonlinear programming wiht equality and inequality is given. Its iterative directions at an arbitrary point x can be obtained through solving a liear system. The terminate conditions a...In this paper,a probe method for nonlinear programming wiht equality and inequality is given. Its iterative directions at an arbitrary point x can be obtained through solving a liear system. The terminate conditions and choices of the parameters are given. The global convergence of the method is proved. Further more,some well known gradient projection type algorithms [1-15] and new gradient projection type algorithms from the linear system are given in this paper.展开更多
Optimizing a vehicle includes testing millions of parameters with hundreds of constraints of the performance. In this article, 162 parameters are optimized with 5 constraints using Lean Optimization combined with Line...Optimizing a vehicle includes testing millions of parameters with hundreds of constraints of the performance. In this article, 162 parameters are optimized with 5 constraints using Lean Optimization combined with Linear Programming. The method converges in this example in about 100 evaluations. This is less than the gradient method needs for its first step.展开更多
Conjugate gradient methods have played a special role in solving large scale nonlinear problems. Recently, the author and Dai proposed an efficient nonlinear conjugate gradient method called CGOPT, through seeking the...Conjugate gradient methods have played a special role in solving large scale nonlinear problems. Recently, the author and Dai proposed an efficient nonlinear conjugate gradient method called CGOPT, through seeking the conjugate gradient direction closest to the direction of the scaled memoryless BFGS method. In this paper, we make use of two types of modified secant equations to improve CGOPT method. Under some assumptions, the improved methods are showed to be globally convergent. Numerical results are also reported.展开更多
The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient...The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.展开更多
The problems involving periodic contacting surfaces have different practical applications. An inverse heat conductionproblem for estimating the periodic Thermal Contact Conductance (TCC) between one-dimensional, const...The problems involving periodic contacting surfaces have different practical applications. An inverse heat conductionproblem for estimating the periodic Thermal Contact Conductance (TCC) between one-dimensional, constantproperty contacting solids has been investigated with conjugate gradient method (CGM) of function estimation.This method converges very rapidly and is not so sensitive to the measurement errors. The advantage of thepresent method is that no a priori information is needed on the variation of the unknown quantities, since the solutionautomatically determines the functional form over the specified domain. A simple, straight forward techniqueis utilized to solve the direct, sensitivity and adjoint problems, in order to overcome the difficulties associatedwith numerical methods. Two general classes of results, the results obtained by applying inexact simulatedmeasured data and the results obtained by using data taken from an actual experiment are presented. In addition,extrapolation method is applied to obtain actual results. Generally, the present method effectively improves theexact TCC when exact and inexact simulated measurements input to the analysis. Furthermore, the results obtainedwith CGM and the extrapolation results are in agreement and the little deviations can be negligible.展开更多
This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic hemivariational inequalities. The unknown coefficient of elliptic hemivariational inequalities depends on the gradient of the sol...This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic hemivariational inequalities. The unknown coefficient of elliptic hemivariational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic hemivariational inequalities are uniquely solvable for the given class of coefficients. The result of existence of quasisolutions of the inverse problems is obtained.展开更多
The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response e...The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li(2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4 dC G(ELOBP4dC G).Numerical results of the ELOBP4 dC G strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.展开更多
基金Project (Nos. 10472102 and 10432030) supported by the NationalNatural Science Foundation of China
文摘This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
基金provided by grants from the LASG State Key Laboratory Special Fundthe National Natural Science Foundation of China (Grant Nos. 40905050, 40830955, and 41375111)
文摘Improving numerical forecasting skill in the atmospheric and oceanic sciences by solving optimization problems is an important issue. One such method is to compute the conditional nonlinear optimal perturbation(CNOP), which has been applied widely in predictability studies. In this study, the Differential Evolution(DE) algorithm, which is a derivative-free algorithm and has been applied to obtain CNOPs for exploring the uncertainty of terrestrial ecosystem processes, was employed to obtain the CNOPs for finite-dimensional optimization problems with ball constraint conditions using Burgers' equation. The aim was first to test if the CNOP calculated by the DE algorithm is similar to that computed by traditional optimization algorithms, such as the Spectral Projected Gradient(SPG2) algorithm. The second motive was to supply a possible route through which the CNOP approach can be applied in predictability studies in the atmospheric and oceanic sciences without obtaining a model adjoint system, or for optimization problems with non-differentiable cost functions. A projection skill was first explanted to the DE algorithm to calculate the CNOPs. To validate the algorithm, the SPG2 algorithm was also applied to obtain the CNOPs for the same optimization problems. The results showed that the CNOPs obtained by the DE algorithm were nearly the same as those obtained by the SPG2 algorithm in terms of their spatial distributions and nonlinear evolutions. The implication is that the DE algorithm could be employed to calculate the optimal values of optimization problems, especially for non-differentiable and nonlinear optimization problems associated with the atmospheric and oceanic sciences.
文摘In this paper,a probe method for nonlinear programming wiht equality and inequality is given. Its iterative directions at an arbitrary point x can be obtained through solving a liear system. The terminate conditions and choices of the parameters are given. The global convergence of the method is proved. Further more,some well known gradient projection type algorithms [1-15] and new gradient projection type algorithms from the linear system are given in this paper.
文摘Optimizing a vehicle includes testing millions of parameters with hundreds of constraints of the performance. In this article, 162 parameters are optimized with 5 constraints using Lean Optimization combined with Linear Programming. The method converges in this example in about 100 evaluations. This is less than the gradient method needs for its first step.
基金supported by National Natural Science Foundation of China(Grant Nos.10831006 and 10971017)
文摘Conjugate gradient methods have played a special role in solving large scale nonlinear problems. Recently, the author and Dai proposed an efficient nonlinear conjugate gradient method called CGOPT, through seeking the conjugate gradient direction closest to the direction of the scaled memoryless BFGS method. In this paper, we make use of two types of modified secant equations to improve CGOPT method. Under some assumptions, the improved methods are showed to be globally convergent. Numerical results are also reported.
基金supported by National Natural Science Foundation of China (Grant Nos. 81173633, 11401038 and 11331012)the Chinese Academy of Sciences Grant (Grant No. kjcx-yw-s7-03)+2 种基金National Natural Science Foundation of China for Distinguished Young Scientists (Grant No. 11125107)the Key Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2015CB856000)the Fundamental Research Funds for the Central Universities (Grant No. 2014RC0904)
文摘The linear conjugate gradient method is an optimal method for convex quadratic minimization due to the Krylov subspace minimization property. The proposition of limited-memory BFGS method and Barzilai-Borwein gradient method, however, heavily restricted the use of conjugate gradient method for largescale nonlinear optimization. This is, to the great extent, due to the requirement of a relatively exact line search at each iteration and the loss of conjugacy property of the search directions in various occasions. On the contrary, the limited-memory BFGS method and the Barzilai-Bowein gradient method share the so-called asymptotical one stepsize per line-search property, namely, the trial stepsize in the method will asymptotically be accepted by the line search when the iteration is close to the solution. This paper will focus on the analysis of the subspace minimization conjugate gradient method by Yuan and Stoer(1995). Specifically, if choosing the parameter in the method by combining the Barzilai-Borwein idea, we will be able to provide some efficient Barzilai-Borwein conjugate gradient(BBCG) methods. The initial numerical experiments show that one of the variants, BBCG3, is specially efficient among many others without line searches. This variant of the BBCG method might enjoy the asymptotical one stepsize per line-search property and become a strong candidate for large-scale nonlinear optimization.
文摘The problems involving periodic contacting surfaces have different practical applications. An inverse heat conductionproblem for estimating the periodic Thermal Contact Conductance (TCC) between one-dimensional, constantproperty contacting solids has been investigated with conjugate gradient method (CGM) of function estimation.This method converges very rapidly and is not so sensitive to the measurement errors. The advantage of thepresent method is that no a priori information is needed on the variation of the unknown quantities, since the solutionautomatically determines the functional form over the specified domain. A simple, straight forward techniqueis utilized to solve the direct, sensitivity and adjoint problems, in order to overcome the difficulties associatedwith numerical methods. Two general classes of results, the results obtained by applying inexact simulatedmeasured data and the results obtained by using data taken from an actual experiment are presented. In addition,extrapolation method is applied to obtain actual results. Generally, the present method effectively improves theexact TCC when exact and inexact simulated measurements input to the analysis. Furthermore, the results obtainedwith CGM and the extrapolation results are in agreement and the little deviations can be negligible.
基金supported by the National Natural Science Foundation of China(No.10971019)the GuangxiProvincial Natural Science Foundation of China(No.2010GXNSFA013114)
文摘This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic hemivariational inequalities. The unknown coefficient of elliptic hemivariational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic hemivariational inequalities are uniquely solvable for the given class of coefficients. The result of existence of quasisolutions of the inverse problems is obtained.
基金supported by National Science Foundation of USA(Grant Nos.DMS1522697,CCF-1527091,DMS-1317330 and CCF-1527091)National Natural Science Foundation of China(Grant No.11428104)
文摘The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li(2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4 dC G(ELOBP4dC G).Numerical results of the ELOBP4 dC G strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems.