文摘针对现有深度图像增强算法存在边界保留特性差的问题,提出梯度掩模导向联合滤波(gradient mask guided joint filter,GMGJF)算法。利用深度图像进行Sobel梯度变换获取边界方向信息,利用深度图像空洞区域生成空洞掩模,再以边界方向和空洞掩模为导向联合彩色图像对深度图像进行迭代高斯滤波和空洞填充。实验结果表明,GMGJF算法的PSNR(peak signal to noise ratio)、SSIM(structural similarity index measure)比IMF(iterative median filter)、GF(guided filter)、JBF(joint bilateral filter)算法的PSNR、SSIM至少提高了3.50%和1.07%,不仅去噪能力、空洞填充能力最强,而且边界特征保持最好,有利于深度图像的特征提取与目标识别。