期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
基于梯度提升回归树的气井油管积液高度预测
1
作者 向华 夏文龙 +3 位作者 刘波涛 孔梦婷 张玉祥 杨浩波 《长江大学学报(自然科学版)》 2024年第5期94-101,共8页
气井油管积液高度预测是气藏开发的重要环节,更是排水采气不可或缺的一部分。气井开采后期,气井底部会出现积液聚集现象,积液过多会造成气井停产,为了避免停产问题,必须对气井油管积液高度进行预测,但传统石油工程模型预测气井油管积液... 气井油管积液高度预测是气藏开发的重要环节,更是排水采气不可或缺的一部分。气井开采后期,气井底部会出现积液聚集现象,积液过多会造成气井停产,为了避免停产问题,必须对气井油管积液高度进行预测,但传统石油工程模型预测气井油管积液高度,存在着具体计算需要大量经验参数等问题。提出一个基于梯度提升回归树模型预测气井油管积液高度的方法,以气井的套压、油压、油管下深、油层中深、日产气、日产水、井口温度7种生产数据为特征,采用集成学习方法,结合多个决策树的预测结果,以迭代逐步改进的方式来提高模型的整体性能,从而精确预测气井油管积液高度。通过与32口井仪器探测实测值、回归决策树和随机森林对比分析,梯度提升回归树模型预测值与实测值相符,预测效果也最好,平均相对误差仅3.87%,调整后的相关系数R2为0.85。梯度提升回归树模型与现有的油管内积液量和环空积液量预测模型相比较,平均相对误差降低了1.9%。 展开更多
关键词 气井积液 预测模型 机器学习 梯度提升回归
下载PDF
基于梯度提升树模型的坡耕地土壤水蚀模拟与分析
2
作者 李潼亮 赵梓鉴 +5 位作者 李斌斌 张风宝 郭正 何琪琳 何庆 杨明义 《水土保持学报》 CSCD 北大核心 2024年第3期54-63,共10页
[目的]针对黄土高原坡耕地土壤侵蚀过程复杂、人为干扰强烈且难以量化的特点,利用机器学习定量解析主要影响因素对坡耕地土壤水蚀的作用与贡献,模拟分析坡耕地土壤水蚀特征并探究其机理,为坡耕地土壤侵蚀的预报提供基础支撑。[方法]基... [目的]针对黄土高原坡耕地土壤侵蚀过程复杂、人为干扰强烈且难以量化的特点,利用机器学习定量解析主要影响因素对坡耕地土壤水蚀的作用与贡献,模拟分析坡耕地土壤水蚀特征并探究其机理,为坡耕地土壤侵蚀的预报提供基础支撑。[方法]基于黄土高原子洲试验站坡耕地小区1959—1969年产流产沙观测数据,精细化表征其影响因子,运用梯度提升树模型对侵蚀量和径流深的变化及其影响因素的贡献进行分析。[结果]数据集中次降雨侵蚀量(0~122.72 t/km^(2))、径流深(0.02~17.20 mm)、降雨历时(2~1410 min)及平均雨强(0.02~4.63 mm)属强变异,变异系数均>1,且多数变量呈右偏态;在相同训练集和测试集划分情况下,对侵蚀量模型预测精度(R^(2)=0.81)略优于径流深模型(R^(2)=0.80),但侵蚀量模型的层数(8层)大于径流深模型(5层),表明侵蚀机理相较径流机理更为复杂;通过梯度提升树模型与SHAP算法对自变量重要性进行排序发现,影响侵蚀模型与径流模型的自变量重要性不同。[结论]受特征提取的限制,在侵蚀量与径流深较小时预测结果不理想,未来研究应当通过引入更多自变量组合方式寻找更多相关变量以提高对侵蚀事件的预测。产流和产沙的主要影响因素存在差异,降水本身特征对产流过程起主要作用,侵蚀产沙过程中主要受到降水与地形相关自变量的共同影响。基于数据驱动,为揭示黄土高原坡耕地侵蚀机理提供参考,并为区域坡耕地土壤侵蚀防治提供科学依据。 展开更多
关键词 预报模型 梯度提升模型 坡耕地 黄土坡面
下载PDF
基于梯度提升回归树的有机污染物生物-沉积物积累因子预测模型 被引量:1
3
作者 王如冰 蔡喜运 《生态毒理学报》 CAS CSCD 北大核心 2023年第4期22-33,共12页
生物-沉积物积累因子(BSAF)是评价底栖无脊椎生物对有机污染物生物积累能力的重要参数,是由化合物、底栖环境与无脊椎生物之间的三相作用决定的。现有模型通常采用线性算法研究化合物BSAF与化合物理化性质的关系,忽略了由于环境-生物-... 生物-沉积物积累因子(BSAF)是评价底栖无脊椎生物对有机污染物生物积累能力的重要参数,是由化合物、底栖环境与无脊椎生物之间的三相作用决定的。现有模型通常采用线性算法研究化合物BSAF与化合物理化性质的关系,忽略了由于环境-生物-化合物相互作用引发的非线性影响,导致线性模型拟合和预测能力有限。本研究基于理化性质(PCP)和分子指纹(ECFP)描述化合物特征,结合环境样点和生物特征,采用梯度提升回归树(GBRT)的非线性算法,分别构建了底栖生物体内积累因子的GBRT-PCP和GBRT-ECFP预测模型,并与利用岭回归算法构建的线性模型进行比较。结果表明,GBRT模型训练集决定系数(R 2)均为0.97,验证集R 2为0.82~0.83,表明GBRT模型的拟合优度和预测能力显著优于岭回归模型(训练集和验证集R 2分别为0.38~0.56和0.38~0.52)。沉积物有机碳含量对生物-沉积物积累因子的影响呈波动下降趋势,脂质含量呈先波动上升而后下降趋势。GBRT-PCP模型结果表明,化合物疏水性(log K_(OW))对生物积累影响呈先平稳后上升而后下降趋势,吸附性(log K_(OC))对生物积累呈波动下降趋势。总体上,具有中等log K_(OW)(6.8~8.2)和中等log K_(OC)(4.4~5.2)的化合物易于积累在生物组织。GBRT-ECFP模型阐明了稠环、芳香环、醚键、C—Br键、联苯键等结构是影响生物积累的关键子结构,该模型基于分子指纹结构可实现对化学品生物积累的高通量预测。本研究建立的模型为化学品生态风险评价和管理决策制定提供理论依据和方法参考。 展开更多
关键词 有机污染物 底栖无脊椎生物 生物-沉积物积累因子 梯度提升回归
下载PDF
基于梯度提升回归树算法的煤炭发热量计算
4
作者 万国祥 《能源科技》 2024年第3期85-89,共5页
煤炭发热量是衡量煤质的关键指标,反映了煤炭充分燃烧时释放的能量。煤炭发热量可通过实验测定和计算途径获取,其中实验方法虽精确却复杂昂贵耗时。在实际应用中,通过多元线性回归估算得出发热量数据,但是这种方法计算的结果准确率较低... 煤炭发热量是衡量煤质的关键指标,反映了煤炭充分燃烧时释放的能量。煤炭发热量可通过实验测定和计算途径获取,其中实验方法虽精确却复杂昂贵耗时。在实际应用中,通过多元线性回归估算得出发热量数据,但是这种方法计算的结果准确率较低。鉴于此,提出了一种基于梯度提升回归树(GBRT)的煤炭发热量计算方法,该方法是一种机器学习回归分析方法,能够有效克服多元线性回归模型在处理非线性数据时的局限性。在国际公认的COALQUAL煤质数据库上对提出的模型进行了验证和对比,结果显示:GBRT模型的预测误差(MAE、MSE、RMSE)均小于多元线性回归模型;拟合优度(R2=0.989)大于多元线性回归模型(R2=0.970)。说明GBRT是一种高效、准确的煤炭发热量预测模型,对于煤质评价具有一定的实际意义。 展开更多
关键词 煤炭发热量 梯度提升回归 回归分析 预测
下载PDF
基于梯度提升树算法的广州市紫外辐射拟合模型构建与相关因子分析
5
作者 李文慧 杨颖璨 沈海波 《气象科技》 2024年第1期124-131,共8页
利用2019—2021年广州市紫外辐射数据、常规气象观测数据以及环境空气质量观测数据,对广州市紫外线辐射强度变化特征及与气象、环境因子的相关性进行分析,选择与广州市紫外辐射显著相关的7种特征因子,采用梯度提升树(Gradient Boosting ... 利用2019—2021年广州市紫外辐射数据、常规气象观测数据以及环境空气质量观测数据,对广州市紫外线辐射强度变化特征及与气象、环境因子的相关性进行分析,选择与广州市紫外辐射显著相关的7种特征因子,采用梯度提升树(Gradient Boosting Decision Tree,GBDT)算法建立广州市紫外辐射拟合模型。结果表明:(1)广州市紫外线辐射强度具有明显的季节变化和日变化特征,季节变化表现为夏秋季高、冬春季低的特征。2020、2021年紫外辐射强度的最大值出现在7月,2019年出现在9月。3年紫外线辐射最小值都出现在3月,2020年最小为15.9 W·m^(-2)。日变化呈现出早晚小中午大的特征,于12:00左右达到日最大值;(2)与紫外线辐射强度显著相关的因子为气温、能见度、总云量、相对湿度、太阳高度角、臭氧(O3)浓度、二氧化氮(NO2)浓度;(3)紫外线辐射模型拟合效果较好,训练集和测试集的决定系数R2分别为0.93、0.80,对应的均方根误差RMSE为2.7 W·m^(-2)、4.9 W·m^(-2)。模型拟合估算等级正确的为75%,相差1级的占21%,相差2级的比例为4%。 展开更多
关键词 紫外线辐射特征 紫外线辐射拟合模型 梯度提升算法
下载PDF
家庭财富积累是否存在邻里效应?——基于分位数回归梯度提升树模型的分析
6
作者 蔡超 王乐华 《统计理论与实践》 2023年第12期46-51,共6页
以2018年中国家庭追踪调查数据(CFPS)为研究对象,采用分位数回归梯度提升树模型研究邻里效应对家庭财富积累的非线性影响。研究结果表明:(1)邻里效应能够更好地估计家庭财富积累;(2)邻里效应对家庭财富积累的影响最强;(3)邻里效应对家... 以2018年中国家庭追踪调查数据(CFPS)为研究对象,采用分位数回归梯度提升树模型研究邻里效应对家庭财富积累的非线性影响。研究结果表明:(1)邻里效应能够更好地估计家庭财富积累;(2)邻里效应对家庭财富积累的影响最强;(3)邻里效应对家庭财富积累的影响呈现非线性特征。不仅利用分位数回归梯度提升树方法从邻里效应这一全新视角对中国家庭财富积累情况进行研究,也为制订化解财富不平等的政策提供了有益启发。 展开更多
关键词 邻里效应 家庭财富积累 分位数回归梯度提升
下载PDF
我国商业银行系统性风险度量研究——基于分位数回归梯度提升树模型的分析
7
作者 蔡超 陈楠 《统计理论与实践》 2023年第3期66-72,共7页
金融风险在不同金融机构间传递时可能存在显著的非线性关系,采用线性分位数回归模型测度系统性金融风险不能正确捕捉这种非线性风险传染关系。因此,以2009—2021年14家中国商业银行为研究对象,采用前沿的分位数回归梯度提升树模型这一... 金融风险在不同金融机构间传递时可能存在显著的非线性关系,采用线性分位数回归模型测度系统性金融风险不能正确捕捉这种非线性风险传染关系。因此,以2009—2021年14家中国商业银行为研究对象,采用前沿的分位数回归梯度提升树模型这一非线性回归方法测度商业银行的系统性风险,并与传统的线性分位数回归模型进行比较。结果表明:基于分位数回归梯度提升树模型测度的系统性风险结果优于线性分位数回归模型,说明我国商业银行的系统性风险在银行机构间的风险溢出具有复杂的非线性关系。 展开更多
关键词 系统性风险 分位数回归梯度提升 非线性 商业银行
下载PDF
基于梯度提升回归树模型的烟草产量预测方法 被引量:2
8
作者 李明钊 李熠胥 王佳 《云南化工》 CAS 2023年第9期109-111,共3页
烟草作为我国重要经济作物之一,其利税为国家和地方财政收入作出了积极贡献。基于我国近年来烟草产量的历史数据,建立梯度提升回归树模型,对烟草产量进行了预测。首先,根据梯度提升思想建立梯度提升回归树模型;然后,根据烟草产量与年份... 烟草作为我国重要经济作物之一,其利税为国家和地方财政收入作出了积极贡献。基于我国近年来烟草产量的历史数据,建立梯度提升回归树模型,对烟草产量进行了预测。首先,根据梯度提升思想建立梯度提升回归树模型;然后,根据烟草产量与年份、月份及上年同期产量间的关联,设置独立因子;最后,借助2017~2021年全国烟草产量的真实数据,对2022年同期产量进行预测分析,并与2022年全国烟草产量的真实数值比较,以验证梯度回归树模型预测的有效性。 展开更多
关键词 梯度提升回归 烟草 产量预测
下载PDF
基于半监督高斯混合模型与梯度提升树的砂岩储层相控孔隙度预测 被引量:5
9
作者 魏国华 韩宏伟 +2 位作者 刘浩杰 李明轩 袁三一 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期46-55,共10页
孔隙度是一种描述储层物性特征的重要参数。考虑砂岩与泥岩的孔隙度存在明显差异,提出了一种基于半监督高斯混合模型与梯度提升树的相控孔隙度预测方法,以实现砂岩储层孔隙度的精细描述。首先利用少量具岩相标签的测井数据确定高斯混合... 孔隙度是一种描述储层物性特征的重要参数。考虑砂岩与泥岩的孔隙度存在明显差异,提出了一种基于半监督高斯混合模型与梯度提升树的相控孔隙度预测方法,以实现砂岩储层孔隙度的精细描述。首先利用少量具岩相标签的测井数据确定高斯混合模型的初始聚类中心及对应的岩相类别;其次利用大量无标签测井数据优化高斯混合模型,实现砂岩与泥岩的准确划分;再次基于地质认识将泥岩孔隙度解释为固定的极小值,从而后续只开展砂岩孔隙度预测;然后将测井曲线拟合方法导出的孔隙度先验信息和测井敏感属性作为梯度提升树算法的多元输入信息,通过学习统计性岩石物理关系建立砂岩孔隙度的计算模型;最终根据岩相结果将砂岩段与泥岩段的孔隙度进行组合得到相控孔隙度。D油田的18口井数据测试结果表明:半监督高斯混合模型的岩相分类效果优于K均值、支持向量机、随机森林等机器学习算法,2口盲井的岩相分类准确率达到94.5%;所构建方法对2口盲井预测的相控孔隙度结果与真实孔隙度具有较高的一致性,平均相关系数达0.805。 展开更多
关键词 相控孔隙度预测 岩相划分 半监督高斯混合模型 梯度提升 机器学习
下载PDF
基于梯度提升回归树的短时交通流预测模型 被引量:23
10
作者 沈夏炯 张俊涛 韩道军 《计算机科学》 CSCD 北大核心 2018年第6期222-227,264,共7页
短时交通流预测是交通流建模的一个重要组成部分,在城市道路交通的管理和控制中起着重要的作用。然而,常见的时间序列模型(如ARIMA)、随机森林(RF)模型在交通流预测方面由于被构建模型产生的残差和输入变量所影响,其预测精度受到限制。... 短时交通流预测是交通流建模的一个重要组成部分,在城市道路交通的管理和控制中起着重要的作用。然而,常见的时间序列模型(如ARIMA)、随机森林(RF)模型在交通流预测方面由于被构建模型产生的残差和输入变量所影响,其预测精度受到限制。针对该问题,提出了一种基于梯度提升回归树的短时交通预测模型来预测交通速度。首先,模型引入Huber损失函数作为模型残差的处理方法;其次,在输入变量中考虑预测断面受到毗邻空间因素和时间因素相关性的影响。模型在训练过程中通过不断调整弱学习器的权重来纠正模型的残差,从而提高模型预测的精度。利用某城市快速路的交通速度数据进行实验,并使用MSE和MAPE等指标将本文模型与ARIMA模型和随机森林模型进行对比,结果表明,文中所提模型的预测精度最好,从而验证了模型在短时交通流预测方面的有效性。 展开更多
关键词 短时交通流预测 梯度提升回归 损失函数 时空相关性
下载PDF
基于梯度提升回归树算法的生活用纸皱纹等级软测量模型 被引量:1
11
作者 张冬启 洪蒙纳 +1 位作者 李继庚 满奕 《中国造纸》 CAS 北大核心 2020年第6期36-42,共7页
皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、... 皱纹等级是衡量生活用纸质量的重要指标之一。然而,工业生产过程中缺少皱纹等级的实时在线测量方法。为了解决上述问题,本研究通过实验对影响生活用纸皱纹质量的因素进行了分析。利用梯度提升回归树算法,对影响皱纹等级的表面粗糙度、皱纹深度、皱纹频率3个主要指标进行了建模,并通过预测这3个指标实现对皱纹等级的在线实时软测量。通过对比工业实测数据,发现该模型对表面粗糙度、皱纹深度、皱纹频率预测精度较高,测试数据的平均相对误差均小于5%。该模型解决了生活用纸皱纹等级在线软测量的问题,对生活用纸生产过程的质量控制提供了新的方法和依据。 展开更多
关键词 起皱 皱纹等级 软测量 梯度提升回归算法
下载PDF
基于梯度提升回归树的城市道路行程时间预测 被引量:25
12
作者 龚越 罗小芹 +1 位作者 王殿海 杨少辉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第3期453-460,共8页
为了提高行程时间的预测精度,在考虑时间序列相关性的同时,分析相邻路段的空间相关性对于行程时间的影响,并提出基于梯度提升回归树模型的城市道路行程时间预测方法.对车牌识别设备获取的实际数据进行预处理,并提出相应的补全算法以解... 为了提高行程时间的预测精度,在考虑时间序列相关性的同时,分析相邻路段的空间相关性对于行程时间的影响,并提出基于梯度提升回归树模型的城市道路行程时间预测方法.对车牌识别设备获取的实际数据进行预处理,并提出相应的补全算法以解决数据缺失问题,建立完整的历史数据集.通过分析各影响因素与行程时间的相关性,构建特征向量.为了能更好地理解模型,通过梯度提升回归树模型输出各变量对于预测结果的重要度.利用实际数据对模型进行评估,预测行程时间的平均绝对误差百分比,约为10.0%.与SVM、ARIMA等方法相比,所提方法具有较高的精度. 展开更多
关键词 交通工程 短时交通流预测 梯度提升回归模型(gbrt) 城市道路行程时间 车牌识别数据
下载PDF
基于梯度提升回归树的大数据集离群点挖掘模型构建
13
作者 胡小琴 《佳木斯大学学报(自然科学版)》 CAS 2019年第5期743-747,共5页
为了提高大数据集离群点挖掘能力,提出基于梯度提升回归树的大数据集离群点挖掘模型,构建大数据集离群点的回归树分布模型,采用多维特征融合方法进行大数据集离群点的特征检测,提取大数据集离群点的空间区域分布特征量,采用梯度提升回... 为了提高大数据集离群点挖掘能力,提出基于梯度提升回归树的大数据集离群点挖掘模型,构建大数据集离群点的回归树分布模型,采用多维特征融合方法进行大数据集离群点的特征检测,提取大数据集离群点的空间区域分布特征量,采用梯度提升回归分析方法对提取的大数据集离群点特征进行模糊聚类处理,在聚类中心中实现对大数据集离群点数据的自适应融合和分布式检测,通过梯度提升回归树分析方法实现大数据集离群点挖掘。仿真结果表明,采用该方法进行大数据集离群点挖掘的准确性较高,抗干扰性较好,提高了大数据集离群点挖掘过程的收敛和控制能力。 展开更多
关键词 梯度提升回归 大数据 集离群点 挖掘
下载PDF
基于梯度提升回归树模型的上海市二手房均价分析
14
作者 汪春丽 刘露萍 《运筹与模糊学》 2021年第3期257-267,共11页
本文基于梯度提升回归树集成模型,利用采集的“链家”网站上海市近三年各住宅小区二手房的相关数据,分析影响上海市二手房均价的因素。对各影响因素运用Person相关系数矩阵及热力图进行初步分析,并将收集的数据分为训练集和测试集,训练... 本文基于梯度提升回归树集成模型,利用采集的“链家”网站上海市近三年各住宅小区二手房的相关数据,分析影响上海市二手房均价的因素。对各影响因素运用Person相关系数矩阵及热力图进行初步分析,并将收集的数据分为训练集和测试集,训练并测试支持向量机模型、线性回归模型及集成模型。最终实验结果表明,基于梯度提升回归树的集成模型更能准确的预测上海市二手房的均价,且梯度提升回归树的MSE是其中最小,相关系数最大达到0.831,具有较好的拟合效果。 展开更多
关键词 二手房均价 机器学习 梯度提升回归 模型对比
下载PDF
一种改进的基于梯度提升回归算法的O2O电子商务推荐模型 被引量:7
15
作者 孙克雷 邓仙荣 《安徽建筑大学学报》 2016年第2期87-91,共5页
位置属性对于线下消费的用户具有重要影响。为了有效提高个性化推荐精度,在对O2O电子商务特点进行用户特征分析的基础上,在推荐算法中引入当前时间参数和位置参数,提出了一种改进的基于梯度提升回归算法的O2O电子商务推荐模型。实验结... 位置属性对于线下消费的用户具有重要影响。为了有效提高个性化推荐精度,在对O2O电子商务特点进行用户特征分析的基础上,在推荐算法中引入当前时间参数和位置参数,提出了一种改进的基于梯度提升回归算法的O2O电子商务推荐模型。实验结果表明,改进的基于梯度提升回归算法的O2O电子商务推荐模型在实时性和准确性方面明显优于传统的推荐算法。 展开更多
关键词 梯度提升回归 位置服务 个性化推荐 行为日志分析
下载PDF
基于VIF-GBRT-MC模型的日径流预测
16
作者 张上要 宋雄 +2 位作者 顷宏利 龙章发 刘连燚 《中国农村水利水电》 北大核心 2024年第9期204-210,共7页
针对气象数据驱动模型在预测径流面临的特征间多重共线性及预测精度较低的问题,将方差膨胀因子VIF、梯度提升回归树GBRT模型和马尔科夫链MC误差修正模型相结合,建立VIF-GBRT-MC组合预测模型。选取汉江流域洋县水文站的日径流进行实例分... 针对气象数据驱动模型在预测径流面临的特征间多重共线性及预测精度较低的问题,将方差膨胀因子VIF、梯度提升回归树GBRT模型和马尔科夫链MC误差修正模型相结合,建立VIF-GBRT-MC组合预测模型。选取汉江流域洋县水文站的日径流进行实例分析,并与单一模型GBRT、长短期记忆神经网络LSTM、支持向量机SVM及相应组合模型VIF-GBRT、VIF-LSTM、VIF-SVM、VIF-LSTM-MC和VIF-SVM-MC的预测结果进行对比分析。采用纳什效率系数NSE、均方根误差归一化NRMSE、平均绝对百分比误差MAPE(%)、峰值预测性能评价指标PPTS(5)和合格率QR(%)对模型的预测结果进行评价。研究结果表明:①VIF能够有效选取对模型预测有利的特征,改善特征间的多重共线性问题,降低模型过拟合的风险,从而提高模型预测精度。②MC误差修正模型能够准确识别未来时刻径流的预测值可能所处的误差状态,并加以修正,进一步提高径流预测的准确性。③GBRT模型相比LSTM和SVM模型,它能够更好适应径流和气象因子的非线性特征,相比其他子模型有着更强的预测能力。将GBRT与VIF和MC模型组合构成VIF-GBRT-MC模型,能够有效降低径流非一致性的影响,显著提高径流的预测精度。研究项目为实际径流预测工作提供了有效的预测方法,并为应对气候变化和人类活动对径流预测带来的挑战提供了一种可行方案。 展开更多
关键词 径流预测 方差膨胀因子 梯度提升回归 马尔科夫链
下载PDF
一种基于梯度提升回归树的系外行星宜居性预测方法
17
作者 朱维军 王鑫 +2 位作者 钟英辉 樊永文 陈永华 《计算机科学》 CSCD 北大核心 2019年第B06期71-73,79,共4页
系外行星的宜居性是近年来探索宇宙的一个热点研究课题,机器学习为系外行星宜居性分类提供了一种可行的手段。然而,现有的宜居性分类效果面临严重不足与局限。为此,给出一种基于梯度提升回归树的系外行星宜居性分类预测方法。首先,使用... 系外行星的宜居性是近年来探索宇宙的一个热点研究课题,机器学习为系外行星宜居性分类提供了一种可行的手段。然而,现有的宜居性分类效果面临严重不足与局限。为此,给出一种基于梯度提升回归树的系外行星宜居性分类预测方法。首先,使用梯度提升回归树算法对系外潜在宜居行星与非宜居行星的相关物理学与天文学数据集进行训练;然后,利用训练好的模型对相关测试集进行预测。仿真实验结果表明,新方法在测试集上的预测准确率高达100%。 展开更多
关键词 梯度提升回归 系外行星 宜居性 二分类
下载PDF
基于梯度提升回归树算法的地面臭氧浓度估算 被引量:18
18
作者 李一蜚 秦凯 +2 位作者 李丁 樊文智 何秦 《中国环境科学》 EI CAS CSCD 北大核心 2020年第3期997-1007,共11页
将机器学习中的梯度提升回归树(GBRT)算法应用到中国地区地面O3浓度制图中,利用地面O3浓度观测数据,结合WRF气象数据、MODIS植被归一化指数以及高程人口数据建立训练预测数据集.通过反向变量选择法选取模型最佳特征变量对其进行训练,十... 将机器学习中的梯度提升回归树(GBRT)算法应用到中国地区地面O3浓度制图中,利用地面O3浓度观测数据,结合WRF气象数据、MODIS植被归一化指数以及高程人口数据建立训练预测数据集.通过反向变量选择法选取模型最佳特征变量对其进行训练,十折交叉验证结果:决定系数R^2=0.89、均方根误差RMSE=4.75 μg/m^3.同时对全国O3人口暴露水平进行评估.结果表明:在暴露强度上,我国人口加权O3浓度值排在前5的省依次是山东、河南、江苏、河北、上海,均值浓度为94.48 μg/m^3.在暴露持续时间上,非达标天数最多的5个省依次是河南、山东、河北、宁夏、北京,一年内有42%的天数处于非达标的状态. 展开更多
关键词 臭氧(O3) 梯度提升回归(gbrt) 人口暴露 时空分布
下载PDF
梯度提升回归树在千岛湖水体CDOM反演中的应用 被引量:3
19
作者 金则澎 毛峰 +2 位作者 程乾 李军 张轩豪 《遥感信息》 CSCD 北大核心 2022年第1期110-118,共9页
针对清洁水体低浓度CDOM内陆水域的水质遥感反演精度不高的问题,基于梯度提升回归树和GF-5卫星数据构建了千岛湖水质CDOM反演模型。利用该模型估算了千岛湖水体CDOM的时空分布,计算CDOM浓度与相关气象数据之间的相关性,分析可能影响CDO... 针对清洁水体低浓度CDOM内陆水域的水质遥感反演精度不高的问题,基于梯度提升回归树和GF-5卫星数据构建了千岛湖水质CDOM反演模型。利用该模型估算了千岛湖水体CDOM的时空分布,计算CDOM浓度与相关气象数据之间的相关性,分析可能影响CDOM时空格局和动态变化的环境因子。将所构建的梯度提升回归树模型与其他机器学习模型进行了比较,分析结果表明,所构建的梯度提升回归树模型反演CDOM精度相对较高。反演的千岛湖整体CDOM浓度较低(0.005~1.472 m^(-1)),其季节性差异较为显著,秋季>夏季>春季>冬季。各个季节高CDOM浓度分布在位于湖的边缘区,主要是入水口以及湖周围与人类活动密切相关的地方,降雨量会增加千岛湖水体CDOM浓度,气压和风速对水质中CDOM的变化没有显著影响。 展开更多
关键词 GF-5 有色可溶性有机物 梯度提升回归 千岛湖水质 时空变化
下载PDF
贝叶斯优化梯度提升树的室内日光照度分布预测
20
作者 冀心成 汪衍凯 +1 位作者 张迎 许彦杰 《计算机与现代化》 2023年第9期44-50,共7页
透过窗户照射进室内的自然光随时间非线性变化,且在空间上的分布呈现不均匀性,导致照度模型预测误差大。在数据量有限的情况下,如何实现自然光下的室内光环境高精度建模是一项巨大的挑战。针对上述问题,提出一种主成分分析与贝叶斯优化... 透过窗户照射进室内的自然光随时间非线性变化,且在空间上的分布呈现不均匀性,导致照度模型预测误差大。在数据量有限的情况下,如何实现自然光下的室内光环境高精度建模是一项巨大的挑战。针对上述问题,提出一种主成分分析与贝叶斯优化梯度提升回归树的室内照度预测算法。该算法首先利用哑变量处理样本数据,通过主成分分析法充分考虑照度数据多特征之间的内在相关性并进行特征重塑;然后利用随机森林确定梯度提升回归树的初始参数,提高其收敛速度和稳定性;最后融合交叉验证和贝叶斯优化算法自适应确定梯度提升回归树的超参数组合,从而进一步提升该模型对室内照度分布的预测性能。实验结果表明,在不同气象、时间条件下,该算法对600个测试样本的照度的R2、MAE和RMSE分别为0.9912、18 lx和40 lx,均优于其他几种算法,且能够显著降低样本偏差值。 展开更多
关键词 日光预测模型 梯度提升回归 贝叶斯优化
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部