In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and mat...In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.展开更多
The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding tr...The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.展开更多
基金supported by the National Natural Science Foundation of China(No.51674187)the International Joint Research Center for Value-added Metallurgy and Processing of Non-ferrous Metals,China(No.2019SD0010)the Key Industry Chain(Group)-Industrial Field in Shaanxi Province,China(No.2019ZDLGY05-03)。
基金Project(50975095)supported by the National Natural Science Foundation of ChinaProject(2012ZM0048)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFA07007003)the National Natural Science Foundation of China (No. 51661019)+4 种基金the Program for Major Projects of Science and Technology in Gansu Province, China (No. 145RTSA004)the Hongliu First-class Discipline Construction Plan of Lanzhou University of Technology, Chinathe Incubation Program of Excellent Doctoral Dissertation, Lanzhou University of Technology, Chinathe Lanzhou University of Technology Excellent Students Studying Abroad Learning Exchange Fundthe State Key Laboratory of Cooperation and Exchange Fund。
文摘The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer.