随着航空事业的迅猛发展,机场车辆调度的安全性和时效性地位已日趋突显,传统的机场车辆调度采取First in first out策略,该策略算法简易,便于实施,缺陷是全部调度的分组被相同对待,无法为实时要求较高的业务提供时延保证,算法也不具有...随着航空事业的迅猛发展,机场车辆调度的安全性和时效性地位已日趋突显,传统的机场车辆调度采取First in first out策略,该策略算法简易,便于实施,缺陷是全部调度的分组被相同对待,无法为实时要求较高的业务提供时延保证,算法也不具有公正性。提出了一种基于粒子群优化的改进机场车辆调度模型,把粒子群已经搜索到的全局最优地点视为一个特殊的粒子,采用梯度降低策略寻优该粒子,全局寻优特性和梯度降低算法的邻域寻优特性相融合,以提升粒子群优化算法的全局寻优效率,减少机场车辆调度计算的时间。仿真实验表明:粒子群优化的改进机场车辆调度模型,能够减少传统调度方法的寻优轮换次数,进而缩短优化调度时间,有效缓解空中堵塞造成的资源浪费。展开更多
文摘随着航空事业的迅猛发展,机场车辆调度的安全性和时效性地位已日趋突显,传统的机场车辆调度采取First in first out策略,该策略算法简易,便于实施,缺陷是全部调度的分组被相同对待,无法为实时要求较高的业务提供时延保证,算法也不具有公正性。提出了一种基于粒子群优化的改进机场车辆调度模型,把粒子群已经搜索到的全局最优地点视为一个特殊的粒子,采用梯度降低策略寻优该粒子,全局寻优特性和梯度降低算法的邻域寻优特性相融合,以提升粒子群优化算法的全局寻优效率,减少机场车辆调度计算的时间。仿真实验表明:粒子群优化的改进机场车辆调度模型,能够减少传统调度方法的寻优轮换次数,进而缩短优化调度时间,有效缓解空中堵塞造成的资源浪费。