In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gra...In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones.展开更多
This paper is to study the two-dimensional stress distribution of a finite functionally graded material (FGM) plate with a circular hole under arbitrary constant loads. Using the method of piece-wise homogeneous layer...This paper is to study the two-dimensional stress distribution of a finite functionally graded material (FGM) plate with a circular hole under arbitrary constant loads. Using the method of piece-wise homogeneous layers, the stress analysis of the finite FGM plate having radial arbitrary elastic properties is made based on the complex variable method combined with the least square boundary collocation technique. Numerical results of stress distribution around the hole are then presented for different loading conditions, different material properties and different plate sizes, respectively. It is shown that the stress concentration in the finite plate is generally enhanced compared with the case of an infinite plate, but it can be significantly reduced by choosing proper change ways of the radial elastic modulus.展开更多
基金Project(10772061) supported by the National Natural Science Foundation of ChinaProject(A200907) supported by the Natural Science Foundation of Heilongjiang Province, China Project(20092322120001) supported by the PhD Programs Foundations of Ministry of Education of China
文摘In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones.
基金supported by the National Natural Science Foundation of China (Grant No. 10972103)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20093218110004)+1 种基金the Funding of Jiangsu Innovation Program for Graduate Education (Grant No.CXZZ11_0191)Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ11-03)
文摘This paper is to study the two-dimensional stress distribution of a finite functionally graded material (FGM) plate with a circular hole under arbitrary constant loads. Using the method of piece-wise homogeneous layers, the stress analysis of the finite FGM plate having radial arbitrary elastic properties is made based on the complex variable method combined with the least square boundary collocation technique. Numerical results of stress distribution around the hole are then presented for different loading conditions, different material properties and different plate sizes, respectively. It is shown that the stress concentration in the finite plate is generally enhanced compared with the case of an infinite plate, but it can be significantly reduced by choosing proper change ways of the radial elastic modulus.