期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
管壳式换热器壳程高黏度流体的传热强化 被引量:8
1
作者 朱冬生 蒋翔 《化工学报》 EI CAS CSCD 北大核心 2005年第8期1451-1455,共5页
It is a key factor to increase heat transfer coefficien t of high viscosity fluid in the shell side for making a high performance cooler.T he heat transfer and flow resistance performance of trapezoid fin tube high vi... It is a key factor to increase heat transfer coefficien t of high viscosity fluid in the shell side for making a high performance cooler.T he heat transfer and flow resistance performance of trapezoid fin tube high visc osity fluid cooler with helical or segmental baffles were studied, and compared with the heat transfer coefficient of low-fin-tube cooler with segmental baffl es. Experimental results indicated that heat transfer film coefficient in the sh ell side of trapezoid fin tube cooler with entire helical baffles was 60% more h igher than that of low-fin-tube cooler with segmental baffles,and pressure dr op was lower by 40%. Heat transfer film coefficient in the shell side of trapezo id fin tube cooler with entire helical baffles was 20% more higher than that of trapezoid-fin tube cooler with segmental baffles, and pressure drop was lower b y 50%.Heat transfer film coefficient in the shell side of trapezoid fin tube coo ler with entire helical baffles was 10% higher than that of trapezoid fin tube c ooler with sectional helical baffles, and pressure drop was lower by 19%.Heat tr ansfer film coefficient in the shell side of trapezoid fin tube cooler with segm ental baffles was 30% more higher than that of low-fin-tube cooler with segmen tal baffles, and pressure drop remained unchanged. 展开更多
关键词 管壳式换热器 高黏度流体 螺旋折流板 梯形翅片管 强化传热
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部