期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
详析机械式矿用风速表检定曲线回归方程的求解过程
1
作者 宋玉 《科技风》 2009年第1期64-,共1页
针对当前煤矿安全生产形势严峻,重特大事故多发的实际情况,为进一步深化煤矿安全整治,国家煤矿安全监察局在2002年提出了"先抽后采,监测监控,以风定产"的瓦斯治理"十二字方针",提到"以风定产"就不得不提... 针对当前煤矿安全生产形势严峻,重特大事故多发的实际情况,为进一步深化煤矿安全整治,国家煤矿安全监察局在2002年提出了"先抽后采,监测监控,以风定产"的瓦斯治理"十二字方针",提到"以风定产"就不得不提矿井通风。在对大量事故进行调查分析中,不难发现绝大多数瓦斯爆炸的原因都涉及到矿井通风问题,这就更加凸现出矿井通风在煤矿安全生产中的重要地位。 展开更多
关键词 检定曲线 相关系数 最小二乘法 回归方程
下载PDF
Excel在温度计量检定校准中的应用
2
作者 单纯利 李广法 《计量与测试技术》 2010年第2期40-41,共2页
本文举例说明了Excel在温度计量领域数据计算、统计分析、回归分析等功能的应用。
关键词 EXCEL 温度计量/校准 /校准记录 /校准曲线 应用
下载PDF
Automatic anatomical classification of colonoscopic images using deep convolutional neural networks
3
作者 Hiroaki Saito Tetsuya Tanimoto +7 位作者 Tsuyoshi Ozawa Soichiro Ishihara Mitsuhiro Fujishiro Satoki Shichijo Dai Hirasawa Tomoki Matsuda Yuma Endo Tomohiro Tada 《Gastroenterology Report》 SCIE EI 2021年第3期226-233,I0002,共9页
Background:A colonoscopy can detect colorectal diseases,including cancers,polyps,and inflammatory bowel diseases.A computer-aided diagnosis(CAD)system using deep convolutional neural networks(CNNs)that can recognize a... Background:A colonoscopy can detect colorectal diseases,including cancers,polyps,and inflammatory bowel diseases.A computer-aided diagnosis(CAD)system using deep convolutional neural networks(CNNs)that can recognize anatomical locations during a colonoscopy could efficiently assist practitioners.We aimed to construct a CAD system using a CNN to distinguish colorectal images from parts of the cecum,ascending colon,transverse colon,descending colon,sigmoid colon,and rectum.Method:We constructed a CNN by training of 9,995 colonoscopy images and tested its performance by 5,121 independent colonoscopy images that were categorized according to seven anatomical locations:the terminal ileum,the cecum,ascending colon to transverse colon,descending colon to sigmoid colon,the rectum,the anus,and indistinguishable parts.We examined images taken during total colonoscopy performed between January 2017 and November 2017 at a single center.We evaluated the concordance between the diagnosis by endoscopists and those by the CNN.The main outcomes of the study were the sensitivity and specificity of the CNN for the anatomical categorization of colonoscopy images.Results:The constructed CNN recognized anatomical locations of colonoscopy images with the following areas under the curves:0.979 for the terminal ileum;0.940 for the cecum;0.875 for ascending colon to transverse colon;0.846 for descending colon to sigmoid colon;0.835 for the rectum;and 0.992 for the anus.During the test process,the CNN system correctly recognized 66.6%of images.Conclusion:We constructed the new CNN system with clinically relevant performance for recognizing anatomical locations of colonoscopy images,which is the first step in constructing a CAD system that will support us during colonoscopy and provide an assurance of the quality of the colonoscopy procedure. 展开更多
关键词 COLONOSCOPY deep learning ENDOSCOPY neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部