This paper we study a consistent criterion for checking Hypotheses. Given definition of consistent criterion for checking hypotheses for family probability measures which were defined by Z. Zerakidze (see 5). We pro...This paper we study a consistent criterion for checking Hypotheses. Given definition of consistent criterion for checking hypotheses for family probability measures which were defined by Z. Zerakidze (see 5). We prove the necessary and sufficient conditions are obtained for the existence of consistent criteria of hypotheses. For example we clearly build of a consistent criteria for checking hypotheses.展开更多
With the rapid development of future network, there has been an explosive growth in multimedia data such as web images. Hence, an efficient image retrieval engine is necessary. Previous studies concentrate on the sing...With the rapid development of future network, there has been an explosive growth in multimedia data such as web images. Hence, an efficient image retrieval engine is necessary. Previous studies concentrate on the single concept image retrieval, which has limited practical usability. In practice, users always employ an Internet image retrieval system with multi-concept queries, but, the related existing approaches are often ineffective because the only combination of single-concept query techniques is adopted. At present semantic concept based multi-concept image retrieval is becoming an urgent issue to be solved. In this paper, a novel Multi-Concept image Retrieval Model(MCRM) based on the multi-concept detector is proposed, which takes a multi-concept as a whole and directly learns each multi-concept from the rearranged multi-concept training set. After the corresponding retrieval algorithm is presented, and the log-likelihood function of predictions is maximized by the gradient descent approach. Besides, semantic correlations among single-concepts and multiconcepts are employed to improve the retrieval performance, in which the semantic correlation probability is estimated with three correlation measures, and the visual evidence is expressed by Bayes theorem, estimated by Support Vector Machine(SVM). Experimental results on Corel and IAPR data sets show that the approach outperforms the state-of-the-arts. Furthermore, the model is beneficial for multi-concept retrieval and difficult retrieval with few relevant images.展开更多
文摘This paper we study a consistent criterion for checking Hypotheses. Given definition of consistent criterion for checking hypotheses for family probability measures which were defined by Z. Zerakidze (see 5). We prove the necessary and sufficient conditions are obtained for the existence of consistent criteria of hypotheses. For example we clearly build of a consistent criteria for checking hypotheses.
基金supported by National Natural Science Foundation of China(Grant Nos.6137022961370178+4 种基金61272067)National Key Technology R&D Program(Grant No.2013BAH72B01)MOE-China Mobile Research Fund(Grant No.MCM20130651)the Natural Science Foundation of GDP(Grant No.S2013010015178)Science-Technology Project of GDED(Grant No.2012KJCX0037)
文摘With the rapid development of future network, there has been an explosive growth in multimedia data such as web images. Hence, an efficient image retrieval engine is necessary. Previous studies concentrate on the single concept image retrieval, which has limited practical usability. In practice, users always employ an Internet image retrieval system with multi-concept queries, but, the related existing approaches are often ineffective because the only combination of single-concept query techniques is adopted. At present semantic concept based multi-concept image retrieval is becoming an urgent issue to be solved. In this paper, a novel Multi-Concept image Retrieval Model(MCRM) based on the multi-concept detector is proposed, which takes a multi-concept as a whole and directly learns each multi-concept from the rearranged multi-concept training set. After the corresponding retrieval algorithm is presented, and the log-likelihood function of predictions is maximized by the gradient descent approach. Besides, semantic correlations among single-concepts and multiconcepts are employed to improve the retrieval performance, in which the semantic correlation probability is estimated with three correlation measures, and the visual evidence is expressed by Bayes theorem, estimated by Support Vector Machine(SVM). Experimental results on Corel and IAPR data sets show that the approach outperforms the state-of-the-arts. Furthermore, the model is beneficial for multi-concept retrieval and difficult retrieval with few relevant images.