针对目前无法实时准确地监测工人是否佩戴安全帽的问题,提出一种基于YOLOv5s的多场景安全帽佩戴检测算法(YOLOv5s-SDSNR)。首先,在YOLOv5s基础上采用最优传输理论将局部匹配策略改进为全局匹配策略,增加正样本的数量,使模型更有针对性训...针对目前无法实时准确地监测工人是否佩戴安全帽的问题,提出一种基于YOLOv5s的多场景安全帽佩戴检测算法(YOLOv5s-SDSNR)。首先,在YOLOv5s基础上采用最优传输理论将局部匹配策略改进为全局匹配策略,增加正样本的数量,使模型更有针对性训练;然后,利用解耦检测头对分类和定位进行解耦,分别提升分类和定位的准确性;最后,使用结构重参数化将主干网络的训练和推理等效转换,以此来提升特征提取能力和推理速度。实验结果表明,相比原YOLOv5s模型,YOLOv5s-SDSNR的mAP达到97.83%,提升了8.01个百分点,在NVDIA Tesla T4上FPS达到67.77,相较于Faster RCNN、YOLOX,改进的模型更适用于多场景安全帽检测需求。展开更多
文摘针对目前无法实时准确地监测工人是否佩戴安全帽的问题,提出一种基于YOLOv5s的多场景安全帽佩戴检测算法(YOLOv5s-SDSNR)。首先,在YOLOv5s基础上采用最优传输理论将局部匹配策略改进为全局匹配策略,增加正样本的数量,使模型更有针对性训练;然后,利用解耦检测头对分类和定位进行解耦,分别提升分类和定位的准确性;最后,使用结构重参数化将主干网络的训练和推理等效转换,以此来提升特征提取能力和推理速度。实验结果表明,相比原YOLOv5s模型,YOLOv5s-SDSNR的mAP达到97.83%,提升了8.01个百分点,在NVDIA Tesla T4上FPS达到67.77,相较于Faster RCNN、YOLOX,改进的模型更适用于多场景安全帽检测需求。
文摘针对当前热轧带钢表面缺陷检测中存在精度低及复杂背景干扰等问题,提出一种基于坐标注意力(coordinate attention,CA)的CA-YOLOv5缺陷检测方法。主要对YOLOv5的输入端、外加模块和检测端3个方面进行改进:在输入端,采用随机拼接4张或9张图片的方法对训练数据进行增广,并利用遗传算法(genertic algorithm,GA)对网络超参数进行寻优,使得YOLOv5更适用于带钢缺陷检测;在主干网络和外加模块之间引入CA机制,加强网络对缺陷深层特征的提取能力;最后,在检测端,对每一检测分支进行解耦,将检测的分类和位置回归两类任务分开,提升网络对缺陷的检测能力。在NEU-DET热轧带钢表面缺陷数据集上进行了验证实验,实验结果证明,CA-YOLOv5的均值平均精度(mean average precision,mAP)达到84.36%,不仅较原YOLOv5算法提升6.68%,而且优于其他先进的检测算法。