Mixed integer linear programming (MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material, energy, and other balance con...Mixed integer linear programming (MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material, energy, and other balance constrains. But the efficiency will decrease significantly when this method is applled in a large-scale problem because there are too many binary variables involved. In this article, an improved method is proposed in order to gen- erate gross error candidates with reliability factors before data rectification. Candidates are used in the MILP objec- tive function to improve the efficiency and accuracy by reducing the number of binary variables and giving accurate weights for suspected gross errors candidates. Performance of this improved method is compared and discussed by applying the algorithm in a widely used industrial example.展开更多
基金Supported by the National High Technology Research and Development Program of China (2007AA40702 and 2007AA04Z191)
文摘Mixed integer linear programming (MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material, energy, and other balance constrains. But the efficiency will decrease significantly when this method is applled in a large-scale problem because there are too many binary variables involved. In this article, an improved method is proposed in order to gen- erate gross error candidates with reliability factors before data rectification. Candidates are used in the MILP objec- tive function to improve the efficiency and accuracy by reducing the number of binary variables and giving accurate weights for suspected gross errors candidates. Performance of this improved method is compared and discussed by applying the algorithm in a widely used industrial example.