The SMOS(soil moisture and ocean salinity) mission undertaken by the European Space Agency(ESA) has provided sea surface salinity(SSS) measurements at global scale since 2009.Validation of SSS values retrieved from SM...The SMOS(soil moisture and ocean salinity) mission undertaken by the European Space Agency(ESA) has provided sea surface salinity(SSS) measurements at global scale since 2009.Validation of SSS values retrieved from SMOS data has been done globally and regionally.However,the accuracy of SSS measurements by SMOS in the China seas has not been examined in detail.In this study,we compared retrieved SSS values from SMOS data with in situ measurements from a South China Sea(SCS) expedition during autumn 2011.The comparison shows that the retrieved SSS values using ascending pass data have much better agreement with in situ measurements than the result derived from descending pass data.Accuracy in terms of bias and root mean square error(RMS) of the SSS retrieved using three different sea surface roughness models is very consistent,regardless of ascending or descending orbits.When ascending and descending measurements are combined for comparison,the retrieved SSS using a semi-empirical model shows the best agreement with in situ measurements,with bias-0.33 practical salinity units and RMS 0.74.We also investigated the impact of environmental conditions of sea surface wind and sea surface temperature on accuracy of the retrieved SSS.The SCS is a semi-closed basin where radio frequencies transmitted from the mainland strongly interfere with SMOS measurements.Therefore,accuracy of retrieved SSS shows a relationship with distance between the validation sites and land.展开更多
The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity fr...The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?–25?N, 105?–125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.展开更多
This paper investigates the short- and long-run causality relationship between Islamic banking and the economic growth. The main goal of this paper is to examine the relationship between the economic growth and Islami...This paper investigates the short- and long-run causality relationship between Islamic banking and the economic growth. The main goal of this paper is to examine the relationship between the economic growth and Islamic banking. The dataset used covers the Asia countries over the period of 1980-2009. The unit root test Im, Pesaran, and Shin (IPS) (2003) confirms that all of the variables that the authors use in the equation below are stationary. The empirical result of the Granger causality test shows a bidirectional relationship between Islamic banking and the economic growth and also a bidirectional relationship between the economic growth and export.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41006110,41106155)
文摘The SMOS(soil moisture and ocean salinity) mission undertaken by the European Space Agency(ESA) has provided sea surface salinity(SSS) measurements at global scale since 2009.Validation of SSS values retrieved from SMOS data has been done globally and regionally.However,the accuracy of SSS measurements by SMOS in the China seas has not been examined in detail.In this study,we compared retrieved SSS values from SMOS data with in situ measurements from a South China Sea(SCS) expedition during autumn 2011.The comparison shows that the retrieved SSS values using ascending pass data have much better agreement with in situ measurements than the result derived from descending pass data.Accuracy in terms of bias and root mean square error(RMS) of the SSS retrieved using three different sea surface roughness models is very consistent,regardless of ascending or descending orbits.When ascending and descending measurements are combined for comparison,the retrieved SSS using a semi-empirical model shows the best agreement with in situ measurements,with bias-0.33 practical salinity units and RMS 0.74.We also investigated the impact of environmental conditions of sea surface wind and sea surface temperature on accuracy of the retrieved SSS.The SCS is a semi-closed basin where radio frequencies transmitted from the mainland strongly interfere with SMOS measurements.Therefore,accuracy of retrieved SSS shows a relationship with distance between the validation sites and land.
基金supported by the National Natural Science Foundation of China under project 41275013the National High-Tech Research and development program of China under project 2013AA09A506-4the National Basic Research Program under project 2009CB723903
文摘The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?–25?N, 105?–125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.
文摘This paper investigates the short- and long-run causality relationship between Islamic banking and the economic growth. The main goal of this paper is to examine the relationship between the economic growth and Islamic banking. The dataset used covers the Asia countries over the period of 1980-2009. The unit root test Im, Pesaran, and Shin (IPS) (2003) confirms that all of the variables that the authors use in the equation below are stationary. The empirical result of the Granger causality test shows a bidirectional relationship between Islamic banking and the economic growth and also a bidirectional relationship between the economic growth and export.