期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合高光谱成像和机器学习的棉种年份鉴别 被引量:5
1
作者 段龙 鄢天荥 +4 位作者 王江丽 叶伟欣 陈伟 高攀 吕新 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第12期3857-3863,共7页
棉花精量播种技术目前已经在新疆兵团全面推广,该技术能精确实现一穴一粒的农艺技术指标,但是也对高质量棉种的筛选提出了更高的要求。为了避免播种往年活力不足的棉种而导致发芽率降低的问题,结合机器学习和近红外(NIR)高光谱成像技术(... 棉花精量播种技术目前已经在新疆兵团全面推广,该技术能精确实现一穴一粒的农艺技术指标,但是也对高质量棉种的筛选提出了更高的要求。为了避免播种往年活力不足的棉种而导致发芽率降低的问题,结合机器学习和近红外(NIR)高光谱成像技术(HSI)进行棉种年份精确鉴别,实现棉种的快速无损筛选。采集2016年—2019年近四年外观无明显差异的棉种各360粒,共1440粒棉种(按照3∶1∶1划分训练集、验证集和测试集)作为样本,按照每批60粒采集915~1698 nm范围的棉种高光谱图像,去除首尾两端噪声大的光谱,保留1002~1602 nm范围的光谱为原始数据。利用Savitzky-Golay(SG)平滑算法对光谱进行预处理,采用主成分载荷方法(PCA-loading)选取13个特征波段,基于全部光谱数据和特征波段(±10 nm)数据建立逻辑回归(LR)、偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)、循环神经网络(RNN)、长短记忆网络(LSTM)和卷积神经网络(CNN)六种分类模型。使用全光谱数据建模时,六种分类模型在测试集上的鉴别准确率分别为96.27%,98.98%,99.32%,96.95%,97.63%和100%,其中CNN和SVM模型取得了较好的结果;使用特征光谱数据建模时,六种分类模型在测试集上的鉴别精度分别为93.56%,97.29%,98.30%,95.25%,94.24%和99.66%,其中CNN和SVM模型仍有较好的分类结果。结果表明,使用全光谱数据建模时,六种分类模型都可以实现较高精度的棉种年份鉴别,使用特征光谱数据建模时CNN和SVM模型的鉴别精度仍可达到98%;其中深度学习方法优于传统机器学习方法,但是传统机器学习方法仍能保持较好的鉴别准确率。因此,结合近红外高光谱成像技术和机器学习方法能够实现棉种年份的高精度鉴别,为棉花精量播种过程中的优质棉种选种技术提供理论依据和方法。 展开更多
关键词 高光谱成像 棉种年份鉴别 卷积神经网络 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部