In order to discuss the localization application technology of cotton seedling using substrate, the author used cotton seed hulls after the production of edible fungi residue, river sand and peat in different proporti...In order to discuss the localization application technology of cotton seedling using substrate, the author used cotton seed hulls after the production of edible fungi residue, river sand and peat in different proportion formula using in field and laboratory cotton seedling test. The results showed that: dry mass per plant and leaf area per plant of formula 3 were higher than Jiangxi cotton seedling nurs- ery substrate.the higher proportion were 48.4% and 73.5%; the rate of forming plantlets, survival rate of transplant and the unginned cotton yield had no obvious difference with the other matrix seedling and transplanting; nursery substrate was returned using as fertilizer, reduced environment pollution, achieved comprehensive utilization and cyclic utilization. Cotton seed hulls after the production of edible fungi residue was a cotton seedling substrate material of saving work,reducing cost and protecting environment and would have a good application prospect.展开更多
Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the...Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther- modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemically activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemically activated CTNSC is spon- taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models, A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride somtion.展开更多
It is well known that the cotton aphid is the major pest in cotton fields of Northwest China, and seven-spot ladybird is an important natural enemy among the various possi- ble natural enemies of cotton aphid. In orde...It is well known that the cotton aphid is the major pest in cotton fields of Northwest China, and seven-spot ladybird is an important natural enemy among the various possi- ble natural enemies of cotton aphid. In order to increase the applications of population dynamics in integrated pest management and control the cotton aphids biologically, we need to understand the population dynamics of cotton aphid and their natural enemies. A delay predator prey system on cotton aphid and seven-spot ladybird beetle are pro- posed in this paper. Based on the comparison theorem and an iterative method, we investigate the global attra^tivity of the equilibrium points which have important bio- logical meanings. Furthermore, some numerical simulations were carried out to illustrateand expand our theoretical results, in which a conjecture to generalize the well-known Theorem 16.4 in H. R. Thiemes book was put forward, which was taken as the open problem. The numerical simulations show coexistence of periodic solution, confirming the theoretical prediction.展开更多
基金Supported by National Cotton Industry Technology System(CARS-18-36)National Key Project of Transgenosis(2011ZX08005-001)+1 种基金National 863 Project(2011AA10A10)National Science & Technology Support Program(2011BAD35B05-2)~~
文摘In order to discuss the localization application technology of cotton seedling using substrate, the author used cotton seed hulls after the production of edible fungi residue, river sand and peat in different proportion formula using in field and laboratory cotton seedling test. The results showed that: dry mass per plant and leaf area per plant of formula 3 were higher than Jiangxi cotton seedling nurs- ery substrate.the higher proportion were 48.4% and 73.5%; the rate of forming plantlets, survival rate of transplant and the unginned cotton yield had no obvious difference with the other matrix seedling and transplanting; nursery substrate was returned using as fertilizer, reduced environment pollution, achieved comprehensive utilization and cyclic utilization. Cotton seed hulls after the production of edible fungi residue was a cotton seedling substrate material of saving work,reducing cost and protecting environment and would have a good application prospect.
基金Supported by the University Grants Commission(UGC),Government of India,New Delhi under the Major Research Project(32-296/2006 SR)
文摘Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther- modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemically activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemically activated CTNSC is spon- taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models, A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride somtion.
基金This research was supported by Startup Project of Doctor Scientific Research of Northwest A&F University (No. Z109021414), National Higher-Education Insti- tution General Research and Development Project (No. 2014YB023), National Natural Science Foundation of China (No. 11461024), the Foundation of Henan Educational Committee (No. 13B110031) and the Fundamental Research Funds for the Universities of Henan Province (No. NSFRF140139).
文摘It is well known that the cotton aphid is the major pest in cotton fields of Northwest China, and seven-spot ladybird is an important natural enemy among the various possi- ble natural enemies of cotton aphid. In order to increase the applications of population dynamics in integrated pest management and control the cotton aphids biologically, we need to understand the population dynamics of cotton aphid and their natural enemies. A delay predator prey system on cotton aphid and seven-spot ladybird beetle are pro- posed in this paper. Based on the comparison theorem and an iterative method, we investigate the global attra^tivity of the equilibrium points which have important bio- logical meanings. Furthermore, some numerical simulations were carried out to illustrateand expand our theoretical results, in which a conjecture to generalize the well-known Theorem 16.4 in H. R. Thiemes book was put forward, which was taken as the open problem. The numerical simulations show coexistence of periodic solution, confirming the theoretical prediction.