The different resistance of cotton (Gossypium hirsutum L.) cultivars to crude toxin of Verticillium dah/iae(VD) was correlated with the activities of chitinase and β-1, 3-glucanase in callus cells. The activities of ...The different resistance of cotton (Gossypium hirsutum L.) cultivars to crude toxin of Verticillium dah/iae(VD) was correlated with the activities of chitinase and β-1, 3-glucanase in callus cells. The activities of chitinase and β-1, 3-glucanase in the callus cells treated with the VD-toxin were increased to the higher level at earlier time point in resistant cultivars than these in the susceptible cultivars. Exogenous salicylic acid (SA) induced the accumulation of chitinase and β -1,3-glucanase, which resulted in the resistance of callus cells to the VD. toxin. Western blot using a polyclonal antibody against β -1,3-glucanase identified 28 kD protein that was induced by VD-toxin, SA, or VD-toxin plus SA.展开更多
[Objective] This study aimed to investigate the combined control effects of endophytic bacteria at different growth stages against cotton Verticfllium wilt and pro- vide a new strategy for the biocontrol of other soil...[Objective] This study aimed to investigate the combined control effects of endophytic bacteria at different growth stages against cotton Verticfllium wilt and pro- vide a new strategy for the biocontrol of other soil-borne diseases. [Method] Endophytic bacteria with high resistance against Verticillium wilt were isolated from seedling, squaring and boll-setting cotton vascular, respectively. Their 16S rDNA se- quences were detected for comparative analysis. Three biocontrol strains were se- lected and identified, whose colonization roles in cotton plants were explored. The control efficiency was determined with indoor and field experiments. [Result] Accord- ing to the 16S rDNA sequence homology, the three strains were identified as Paeni- bacillus polyrnyxa YUPP-8, Paenibacillus xylanilyticus YUPP-1 and Bacillus subtilis YUPP-2, respectively. Results of colonization assessment showed that three strains all could be successfully colonized in cotton vascular. However, application amount had a positive effect on the number of colonized biocontrol bacteria in cotton, strain YUPP-8 had the largest number of colonized biocontrol bacteria in seedling period, strain YUPP-1 had the largest number of colonized biocontrol bacteria in squaring period, and strain YUPP-2 had the largest number of colonized biocontrol bacteria in boll-setting period. Indoor pot experiment showed that cotton plants in combined bio- control bacteria treatment group were not infected in flowing period, while Verticillium wilt morbidity rate of cotton treated with single strain in seedling period were 6.7% (YUPP-8), 6.7% (YUPP-1) and 13.3% (YUPP-2); however, Verticillium wilt morbidity rate wilt of the control reached 80%. Field experiment conducted during 2010-2011 showed that the combined application of three strains had better effect than separate application; specifically, Verticillium wilt morbidity rate and disease index of cotton in boll-setting period with combined application of three strains in 2010 were 9.4% and 6.5, respectively, while those in control group were 47.5% and 32.8; results in 2011 were similar to 2010, with higher disease severity. These results indicate that com- bined application of endophytic bacteria at different growth stages has great applica- tion potential in control of cotton Verticillium wilt. [Conclusion] This study preliminarily overcomes the defects in the application of biocontrol bacteria and provided reference for the prevention and treatment of other soil-borne diseases.展开更多
Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. T...Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. Taking advantage of cotton (Gossypium hirsutum) genome, we discovered pathogenesis-related (PR) gene families, which have been widely used as markers of immune responses in plants. To profile the expression of G. hirsutum PR genes in the process of plant immunity, we treated cotton roots with two immunogenic peptides, fig22 and nlp20 known as pathogen-associated molecular patterns, as well as three Verticillium dahliae-derived peptides, nlp20vd2, nlp23vd3, and nlp23vd4 which are highly identical to nlp20. Quantitative real-time PCR results revealed that 14 G. hirsutum PR gene (GhPR) families were induced or suppressed independently in response to fig22, nip20, nlp20va2, nlp23vd3, and nlp23vd4. Most GhPR genes are expressed highest at 3 h post incubation of immunogenic peptides. Compared to fig22 and nlp20, nlp20vd2 is more effective to trigger up-regulated expression of GhPR genes. Notably, both nlp23vd3 and nlp23vd4 are able to induce GhPR gene up-regulation, although they do not induce necrosis on cotton leaves. Thus, our results provide marker genes and new immunogenic peptides for further investigation of cotton-V, dahliae interaction.展开更多
Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhP...Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin btmdling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence important for defense against V. dahliae infection. showing that actin cytoskeleton reorganization involving GhPFN2 is展开更多
文摘The different resistance of cotton (Gossypium hirsutum L.) cultivars to crude toxin of Verticillium dah/iae(VD) was correlated with the activities of chitinase and β-1, 3-glucanase in callus cells. The activities of chitinase and β-1, 3-glucanase in the callus cells treated with the VD-toxin were increased to the higher level at earlier time point in resistant cultivars than these in the susceptible cultivars. Exogenous salicylic acid (SA) induced the accumulation of chitinase and β -1,3-glucanase, which resulted in the resistance of callus cells to the VD. toxin. Western blot using a polyclonal antibody against β -1,3-glucanase identified 28 kD protein that was induced by VD-toxin, SA, or VD-toxin plus SA.
基金Supported by Public Welfare Industry(Agriculture)Research Special Project of Ministry of Agriculture(nyhyzx07-052)Open Project of the State Key Laboratory of Agricultural Microbiology(AML200806)+1 种基金Major Project of Hubei Provincial Department of Education(Z20091201)National College Students Innovative Experimental Program(091048922)~~
文摘[Objective] This study aimed to investigate the combined control effects of endophytic bacteria at different growth stages against cotton Verticfllium wilt and pro- vide a new strategy for the biocontrol of other soil-borne diseases. [Method] Endophytic bacteria with high resistance against Verticillium wilt were isolated from seedling, squaring and boll-setting cotton vascular, respectively. Their 16S rDNA se- quences were detected for comparative analysis. Three biocontrol strains were se- lected and identified, whose colonization roles in cotton plants were explored. The control efficiency was determined with indoor and field experiments. [Result] Accord- ing to the 16S rDNA sequence homology, the three strains were identified as Paeni- bacillus polyrnyxa YUPP-8, Paenibacillus xylanilyticus YUPP-1 and Bacillus subtilis YUPP-2, respectively. Results of colonization assessment showed that three strains all could be successfully colonized in cotton vascular. However, application amount had a positive effect on the number of colonized biocontrol bacteria in cotton, strain YUPP-8 had the largest number of colonized biocontrol bacteria in seedling period, strain YUPP-1 had the largest number of colonized biocontrol bacteria in squaring period, and strain YUPP-2 had the largest number of colonized biocontrol bacteria in boll-setting period. Indoor pot experiment showed that cotton plants in combined bio- control bacteria treatment group were not infected in flowing period, while Verticillium wilt morbidity rate of cotton treated with single strain in seedling period were 6.7% (YUPP-8), 6.7% (YUPP-1) and 13.3% (YUPP-2); however, Verticillium wilt morbidity rate wilt of the control reached 80%. Field experiment conducted during 2010-2011 showed that the combined application of three strains had better effect than separate application; specifically, Verticillium wilt morbidity rate and disease index of cotton in boll-setting period with combined application of three strains in 2010 were 9.4% and 6.5, respectively, while those in control group were 47.5% and 32.8; results in 2011 were similar to 2010, with higher disease severity. These results indicate that com- bined application of endophytic bacteria at different growth stages has great applica- tion potential in control of cotton Verticillium wilt. [Conclusion] This study preliminarily overcomes the defects in the application of biocontrol bacteria and provided reference for the prevention and treatment of other soil-borne diseases.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11040500) to Hui-Shan GuoNational Natural Science Foundation(31500119) to Chenlei HuaNational Natural Science Foundation(31600124) to Jian-Hua Zhao
文摘Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. Taking advantage of cotton (Gossypium hirsutum) genome, we discovered pathogenesis-related (PR) gene families, which have been widely used as markers of immune responses in plants. To profile the expression of G. hirsutum PR genes in the process of plant immunity, we treated cotton roots with two immunogenic peptides, fig22 and nlp20 known as pathogen-associated molecular patterns, as well as three Verticillium dahliae-derived peptides, nlp20vd2, nlp23vd3, and nlp23vd4 which are highly identical to nlp20. Quantitative real-time PCR results revealed that 14 G. hirsutum PR gene (GhPR) families were induced or suppressed independently in response to fig22, nip20, nlp20va2, nlp23vd3, and nlp23vd4. Most GhPR genes are expressed highest at 3 h post incubation of immunogenic peptides. Compared to fig22 and nlp20, nlp20vd2 is more effective to trigger up-regulated expression of GhPR genes. Notably, both nlp23vd3 and nlp23vd4 are able to induce GhPR gene up-regulation, although they do not induce necrosis on cotton leaves. Thus, our results provide marker genes and new immunogenic peptides for further investigation of cotton-V, dahliae interaction.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11040600)the National Natural Science Foundation of China(31671278)the State Key Laboratory of Plant Genomics of China(2015B0129-02)
文摘Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin btmdling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence important for defense against V. dahliae infection. showing that actin cytoskeleton reorganization involving GhPFN2 is