期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于BP神经网络确立森林健康快速评价指标 被引量:38
1
作者 甘敬 朱建刚 +1 位作者 张国祯 余新晓 《林业科学》 EI CAS CSCD 北大核心 2007年第12期1-7,共7页
拟定森林健康快速评价(RAFH)指标,通过对训练样本的模式识别来构建一个BP神经网络,观察其能否收敛,并以测试样本为新的输入项进行模拟,采用误差百分比法、线性回归检验法和Nash-Sutcliffe效率法对模拟值与期望值的吻合程度进行检验,以... 拟定森林健康快速评价(RAFH)指标,通过对训练样本的模式识别来构建一个BP神经网络,观察其能否收敛,并以测试样本为新的输入项进行模拟,采用误差百分比法、线性回归检验法和Nash-Sutcliffe效率法对模拟值与期望值的吻合程度进行检验,以此验证拟定指标的合理性。结果表明:在隐含层神经元n≥16时,网络能较好地收敛,说明该网络输入项——林分层次结构、病虫害程度和土壤厚度3个指标的训练样本值与目标输出项——森林健康精准评价(PAFH)结果的非线性相关程度高;模拟值与期望值的相对误差均值为-6.1409%,回归方程斜率为0.9683,截距为0.0490,Nash-Sutcliffe效率为0.9054,均表明二者之间吻合较好。因此,林分层次结构、病虫害程度和土壤厚度可以作为森林健康快速评价(RAFH)的指标。 展开更多
关键词 森林健康快速评价 指标 BP神经网络 合理性检验
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部