期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于近红外光谱及BP神经网络分析法预测森林土壤有机碳含量 被引量:9
1
作者 李耀翔 汪洪涛 +2 位作者 耿志伟 张鹏 徐浩凯 《西部林业科学》 CAS 北大核心 2014年第3期1-6,共6页
为快速测定森林土壤的有机碳含量,从取自小兴安岭带岭林业局东方红林场的120个土壤样品中采集350~2500 nm的土壤近红外光谱数据,对光谱做一定的预处理后,运用主成分分析法压缩提取前8个主成分,结合BP神经网络非线性方法建立土壤有... 为快速测定森林土壤的有机碳含量,从取自小兴安岭带岭林业局东方红林场的120个土壤样品中采集350~2500 nm的土壤近红外光谱数据,对光谱做一定的预处理后,运用主成分分析法压缩提取前8个主成分,结合BP神经网络非线性方法建立土壤有机碳含量的预测模型并进行验证。结果表明,验证集的相关系数为0.78002,均方根误差为0.5002,预测集的相关系数为0.84941,均方根误差为0.4538。应用近红外光谱技术及BP神经网络非线性方法建模可以有效地预测土壤的有机碳含量,为野外大面积快速测定森林土壤碳含量提供了技术依据。 展开更多
关键词 近红外光谱技术 BP神经网络 森林土壤碳含量
下载PDF
基于NIR及PLS-PCR-SVR预测森林土壤有机碳含量 被引量:5
2
作者 李耀翔 汪洪涛 +2 位作者 耿志伟 张鹏 徐浩凯 《安徽农业科学》 CAS 2014年第15期4702-4706,4742,共6页
森林土壤有机碳含量是表征林地土壤营养状况的重要指标,该文建立了土壤有机碳含量的近红外光谱定标模型,并比较了偏最小二乘法(PLS)、支持向量机回归(SVR)、主成分回归(PCR)3种建模方法及Savitzky-Golay平滑+多元散射校正、Savit... 森林土壤有机碳含量是表征林地土壤营养状况的重要指标,该文建立了土壤有机碳含量的近红外光谱定标模型,并比较了偏最小二乘法(PLS)、支持向量机回归(SVR)、主成分回归(PCR)3种建模方法及Savitzky-Golay平滑+多元散射校正、Savitzky-Golay平滑+一阶导数、Savitzky-Golay平滑+二阶导数、Savitzky-Golay平滑+多元散射校正+一阶导数、Savitzky-Golay平滑+多元散射校正+二阶导数5种光谱预处理方法对土壤有机碳含量定标模型精度的影响,同时进行了波段优选。结果表明:当光谱区域为1 380~1 450 nm,1 800~1 950 nm,2 050~2 300 nm,光谱数据采用Savitzky-Golay平滑+多元散射校正+一阶导数预处理,采用PLS的建模方法,主成分数为8时,建立的校正模型预测效果最佳。校正模型的R、RMSE、SEC分别为0.805 2、0.512 2、0.512 5;预测模型的R、RMSE、SEP分别为0.768 1、0.514 3、0.514 6。因此,利用近红外光谱技术可以实现土壤有机碳含量的快速估测,为林区实时、大面积、快速测定森林土壤有机碳含量提供了技术可行性。 展开更多
关键词 近红外光谱技术 森林土壤有机含量 波段优选
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部