Responses of soil microbial activities to elevated CO, in experiment sites of Pinus sylvestriformis and Pinus koratensts seecllmgs were studied in summer in 2003. The results indicated the number of bacteria decreased...Responses of soil microbial activities to elevated CO, in experiment sites of Pinus sylvestriformis and Pinus koratensts seecllmgs were studied in summer in 2003. The results indicated the number of bacteria decreased significantly (p 〈 0.05) under elevated CO, for Pinus syivestriformis and Pinups koraiensis. Amylase and invertase activities in soil increased for Pinus syivestriformis and decreased for Pinus koraiensis with CO2 enrichment compared with those at ambient (350 pmol·mol^-1). The size of microbial biomass C also decreased significantly at 700 μmol- mol^-1 CO2. Bacterial community structure had some evident changes under elevated CO, by DGGE (Denaturing Gradient Gel Electrophoresis) analysis of bacterial 16S rDNA gene fragments amplified by PCR from DNA extracted directly from soil. The results suggested that responses of soil microorganisms to elevated CO2 would be related to plant species exposed to elevated CO2.展开更多
The soil microbiome that plays important ecological roles in mountains and forests is influenced by anthropogenic and natural causes.Human activity,particularly harvesting or thinning,affects the soil microbiome in fo...The soil microbiome that plays important ecological roles in mountains and forests is influenced by anthropogenic and natural causes.Human activity,particularly harvesting or thinning,affects the soil microbiome in forests by altering environmental conditions,such as vegetation,microclimate,and soil physicochemical properties.The purpose of this study was to investigate the effects on forest thinning on the diversity and composition of the soil bacterial community.From next-generation sequencing results of the 16S rRNA gene,we examined differences in soil bacterial diversity and community composition before and after thinning at Mt.Janggunbong,South Korea.We identified 40 phyla,103 classes,192 orders,412families,947 genera,and 3,145 species from the soil samples.Acidobacteria and Proteobacteria were the most dominant bacterial phyla in the forest soil of Mt.Janggunbong.Soil bacterial diversity measures(richness,Shannon diversity index,and evenness)at the phylum level increased after thinning,whereas species-level taxonomic richness decreased after thinning.Thinning provided new opportunities for bacterial species in Chloroflexi,Verrucomicrobia,Nitrospirae,and other nondominant bacterial taxa,especially for those not found in Mt.Janggunbong before thinning,to settle and adapt to the changing environment.Our results suggested that thinning affected the diversity and composition of soil bacterial communities in forests and mountains.展开更多
Soil microorganisms are known to significantly contribute to climate change through soil carbon(C)cycle feedbacks.However,it is challenging to incorporate these feedbacks into predictions of future patterns of terrest...Soil microorganisms are known to significantly contribute to climate change through soil carbon(C)cycle feedbacks.However,it is challenging to incorporate these feedbacks into predictions of future patterns of terrestrial C cycling,largely because of the vast diversity of soil microorganisms and their responses to environmental conditions.Here,we show that the composition of the bacterial community can provide information about the microbial community-level thermal response(MCTR),which drives ecosystemscale soil C-climate feedbacks.The dominant taxa from 169 sites representing a gradient from tropical to boreal forest mainly belonged to the phyla Actinobacteria and Acidobacteria.Moreover,we show that the MCTR in warm biomes and acidic soils was linked primarily to bacteria,whereas the MCTR in cold biomes and alkaline soils was primarily associated with fungi.Our results provide strong empirical evidence of linkages between microbial composition and the MCTR across a wide range of forests,and suggest the importance of specific microorganisms in regulating soil C-climate feedbacks.展开更多
基金The study was supported by Major State Basic Research Development Program of China (2002CB412502) and the Knowledge Inno-vation Project from Chinese Academy of Sciences (KZCX1-SW-01-03).
文摘Responses of soil microbial activities to elevated CO, in experiment sites of Pinus sylvestriformis and Pinus koratensts seecllmgs were studied in summer in 2003. The results indicated the number of bacteria decreased significantly (p 〈 0.05) under elevated CO, for Pinus syivestriformis and Pinups koraiensis. Amylase and invertase activities in soil increased for Pinus syivestriformis and decreased for Pinus koraiensis with CO2 enrichment compared with those at ambient (350 pmol·mol^-1). The size of microbial biomass C also decreased significantly at 700 μmol- mol^-1 CO2. Bacterial community structure had some evident changes under elevated CO, by DGGE (Denaturing Gradient Gel Electrophoresis) analysis of bacterial 16S rDNA gene fragments amplified by PCR from DNA extracted directly from soil. The results suggested that responses of soil microorganisms to elevated CO2 would be related to plant species exposed to elevated CO2.
基金support of R&D Program for Forest Science Technology (Project No. 2013069D10-1719-AA03) provided by Korea Forest Service (Korea Forestry Promotion Institute)
文摘The soil microbiome that plays important ecological roles in mountains and forests is influenced by anthropogenic and natural causes.Human activity,particularly harvesting or thinning,affects the soil microbiome in forests by altering environmental conditions,such as vegetation,microclimate,and soil physicochemical properties.The purpose of this study was to investigate the effects on forest thinning on the diversity and composition of the soil bacterial community.From next-generation sequencing results of the 16S rRNA gene,we examined differences in soil bacterial diversity and community composition before and after thinning at Mt.Janggunbong,South Korea.We identified 40 phyla,103 classes,192 orders,412families,947 genera,and 3,145 species from the soil samples.Acidobacteria and Proteobacteria were the most dominant bacterial phyla in the forest soil of Mt.Janggunbong.Soil bacterial diversity measures(richness,Shannon diversity index,and evenness)at the phylum level increased after thinning,whereas species-level taxonomic richness decreased after thinning.Thinning provided new opportunities for bacterial species in Chloroflexi,Verrucomicrobia,Nitrospirae,and other nondominant bacterial taxa,especially for those not found in Mt.Janggunbong before thinning,to settle and adapt to the changing environment.Our results suggested that thinning affected the diversity and composition of soil bacterial communities in forests and mountains.
基金supported by the National Natural Science Foundation of China(91951112,32030067,and 31830009)the Shanghai Pujiang Program(2020PJD003)the Postdoctoral Science Foundation of China(2020M670975)。
文摘Soil microorganisms are known to significantly contribute to climate change through soil carbon(C)cycle feedbacks.However,it is challenging to incorporate these feedbacks into predictions of future patterns of terrestrial C cycling,largely because of the vast diversity of soil microorganisms and their responses to environmental conditions.Here,we show that the composition of the bacterial community can provide information about the microbial community-level thermal response(MCTR),which drives ecosystemscale soil C-climate feedbacks.The dominant taxa from 169 sites representing a gradient from tropical to boreal forest mainly belonged to the phyla Actinobacteria and Acidobacteria.Moreover,we show that the MCTR in warm biomes and acidic soils was linked primarily to bacteria,whereas the MCTR in cold biomes and alkaline soils was primarily associated with fungi.Our results provide strong empirical evidence of linkages between microbial composition and the MCTR across a wide range of forests,and suggest the importance of specific microorganisms in regulating soil C-climate feedbacks.