Leaf morphological and physiological traits of Abies faxoniana growing in a natural forest along an altitudinal gradient were measured with the aim to identify the central mechanism for the marked variation in foliar ...Leaf morphological and physiological traits of Abies faxoniana growing in a natural forest along an altitudinal gradient were measured with the aim to identify the central mechanism for the marked variation in foliar δ13C determined by an isotope ratio mass spectrometer. There is a unimodal pattern of plant functional traits in these temperate and semi- humid areas. Stomatal parameters, specific leaf area, and C/N ratio increased, whereas C, N and δ13C values decreased with increasing altitude below 3000 m a.s.1. In contrast, they exhibited opposite trends above 3000 m a.s.l.. Our results demonstrated that high-altitude plants achieve higher water use efficiency (WUE) at the expense of decreasing nitrogen use efficiency (NUE), whereas plants at 3000 m can maintain a relatively higher NUE but a lower WUE. Such intra-specific differences in the trade-off between NUE and WUE may partially explain the altitudinal distribution of the plants in relation to moisture and nutrient availability. Our results clearly indicate that the functional relations between nutritional status and the structure of leaves are responsible for the altitudinal variations associated with δ13C. The pivotal role of specific leaf area in regulating plant adaptive responses provides a potential physiological mechanism for the observed growth advantage of populations occupying the medium altitude. These adaptive responses altitudinal gradients showed that an altitude to of approximately 3000 m a.s.1, is the optimum distribution zone for A. faxoniana, allowing the most vigorous growth and metabolism. These results improve our understanding of the various roles of environmental and biotic variables upon δ13C dynamics and provide useful information for subalpine coniferous forest management.展开更多
In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high ...In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high differentiations among the three strata in which this population could be classified. The rural population of Evros Prefecture (Greece) with criterion the mean altitude of settlements was classified in three strata, the mountainous, semi-mountainous and fiat population for the estimation of mean consumption of forest fuelwood for covering of heating and cooking needs in households of these three strata. The analysis of this methodology includes: (1) the determination of total size of sample for entire the rural population and its allocation to the various strata; (2) the investigation of effectiveness of stratification with the technique of analysis of variance (One-Way ANOVA); (3) the conduct of sampling research with the realization of face-to-face interviews in selected households and (4) the control of forms of the questionnaire and the analysis of data by using the statistical package for social sciences, SPSS for Windows. All data for the analysis of this methodology and its practical application were taken by the pilot sampling which was realized in each stratum. Relative paper was not found by the review of literature.展开更多
Charcoals collected from the middle-late Pliocene sediments of the Taigu Basin,Shanxi Province,China,have been identified as Ulmus sp.(Ulmaceae),Prunus sp.,Maloidoxylon sp.(Rosaceae),and Maclura sp.(Moraceae).These ta...Charcoals collected from the middle-late Pliocene sediments of the Taigu Basin,Shanxi Province,China,have been identified as Ulmus sp.(Ulmaceae),Prunus sp.,Maloidoxylon sp.(Rosaceae),and Maclura sp.(Moraceae).These taxa,along with the previously known fossils,indicate the occurrence of temperate climate and local wildfire at that time.Charcoals of trees and/or shrubs and the morphological changes of these charcoals demonstrate that crown fires and surface fires occurred in the Taigu Basin during the middle-late Pliocene.展开更多
基金supported by the NationalNatural Science Foundation of China (Grant No. 31170373)Young Talent Team Program of Institute of Mountain Hazards and Environment (SDSQB-2012-01)
文摘Leaf morphological and physiological traits of Abies faxoniana growing in a natural forest along an altitudinal gradient were measured with the aim to identify the central mechanism for the marked variation in foliar δ13C determined by an isotope ratio mass spectrometer. There is a unimodal pattern of plant functional traits in these temperate and semi- humid areas. Stomatal parameters, specific leaf area, and C/N ratio increased, whereas C, N and δ13C values decreased with increasing altitude below 3000 m a.s.1. In contrast, they exhibited opposite trends above 3000 m a.s.l.. Our results demonstrated that high-altitude plants achieve higher water use efficiency (WUE) at the expense of decreasing nitrogen use efficiency (NUE), whereas plants at 3000 m can maintain a relatively higher NUE but a lower WUE. Such intra-specific differences in the trade-off between NUE and WUE may partially explain the altitudinal distribution of the plants in relation to moisture and nutrient availability. Our results clearly indicate that the functional relations between nutritional status and the structure of leaves are responsible for the altitudinal variations associated with δ13C. The pivotal role of specific leaf area in regulating plant adaptive responses provides a potential physiological mechanism for the observed growth advantage of populations occupying the medium altitude. These adaptive responses altitudinal gradients showed that an altitude to of approximately 3000 m a.s.1, is the optimum distribution zone for A. faxoniana, allowing the most vigorous growth and metabolism. These results improve our understanding of the various roles of environmental and biotic variables upon δ13C dynamics and provide useful information for subalpine coniferous forest management.
文摘In this paper, analysis of methodology was realized for the application of stratified random sampling with optimum allocation in the case of a subject of research which concerns the rural population and presents high differentiations among the three strata in which this population could be classified. The rural population of Evros Prefecture (Greece) with criterion the mean altitude of settlements was classified in three strata, the mountainous, semi-mountainous and fiat population for the estimation of mean consumption of forest fuelwood for covering of heating and cooking needs in households of these three strata. The analysis of this methodology includes: (1) the determination of total size of sample for entire the rural population and its allocation to the various strata; (2) the investigation of effectiveness of stratification with the technique of analysis of variance (One-Way ANOVA); (3) the conduct of sampling research with the realization of face-to-face interviews in selected households and (4) the control of forms of the questionnaire and the analysis of data by using the statistical package for social sciences, SPSS for Windows. All data for the analysis of this methodology and its practical application were taken by the pilot sampling which was realized in each stratum. Relative paper was not found by the review of literature.
基金supported by National Natural Science Foundation of China(Grant Nos.30770148,30990241,30530050,39770046 and 41072022)
文摘Charcoals collected from the middle-late Pliocene sediments of the Taigu Basin,Shanxi Province,China,have been identified as Ulmus sp.(Ulmaceae),Prunus sp.,Maloidoxylon sp.(Rosaceae),and Maclura sp.(Moraceae).These taxa,along with the previously known fossils,indicate the occurrence of temperate climate and local wildfire at that time.Charcoals of trees and/or shrubs and the morphological changes of these charcoals demonstrate that crown fires and surface fires occurred in the Taigu Basin during the middle-late Pliocene.