期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Variation of SPAD values in uneven-aged leaves of different dominant species in Castanopsis carlessi forest in Lingshishan National Forest Park 被引量:3
1
作者 王英姿 洪伟 +4 位作者 吴承祯 林晗 范海兰 陈灿 李键 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期362-366,I0007,共6页
The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using po... The greenness (SPAD) of uneven-aged leaves of dominant species in the Castanopsis carlessi forest at different altitude gradients in Lingshishan National Forest Park, Fujian Province, China were measured by using portable chlorophyll meter SPAD-502. In addition, the correlation between SPAD value and the concentration of chlorophyll and foliar nitrogen was also investigated. Significant variations in SPAD values were found between the uneven-aged leaves of different dominant species and different altitude gradients. Regression analysis showed that SPAD value was significantly correlated with the concentration of chlorophyll and the content of foliar nitrogen, indicating that SPAD value could be indicators for foliar chlorophyll and nitrogen. It is suggested that SPAD meter is a useful tool for forest assessments in decision-making and operational nutrient management programs. 展开更多
关键词 Castanopsis carlessi forest chlorophyll content chlorophyll meter dominant population forest nutrient of nitrogen Lingshishan specific leaf area
下载PDF
N limitation increases along a temperate forest succession:evidences from leaf stoichiometry and nutrient resorption 被引量:5
2
作者 Peng Zhang Xiao-Tao Lu +2 位作者 Mai-He Li Tonggui Wu Guangze Jin 《Journal of Plant Ecology》 SCIE CSCD 2022年第5期1021-1035,共15页
Forest productivity and carbon(C) sequestration largely depend on soil N and P availability.To date,however,the temporal variation of nutrient limitation along forest succession is still under debate.Leaf stoichiometr... Forest productivity and carbon(C) sequestration largely depend on soil N and P availability.To date,however,the temporal variation of nutrient limitation along forest succession is still under debate.Leaf stoichiometry and nutrient resorption are important indicators for predicting nutrient limitation of plant growth.Here,we measured nitrogen(N)and phosphorus(P)concentrations in green leaves and leaf liter for all woody species at four stages of temperate forest succession,and analyzed how abiotic and biotic factors affect leaf stoichiometry and nutrient resorption along forest succession.At the individual scale,leaf N and P concentrations had a significant increase at the end of the succession,while no change in leaf N:P ratio was detected.Nitrogen resorption efficiency(NRE)increased significantly with succession,but P resorption efficiency(PRE)first increased and then decreased.Significant increases in NRE:PRE ratios only occurred at the end of the succession.Moreover,plant N cycling was less responsive to soil nutrient than P cycling.At the community scale,we found that leaf N and P concentrations first decreased and then increased along forest succession,which were mainly affected by Shannon-Wiener index and species richness.Leaf N:P ratio significantly varied with succession and was mainly determined by community-weighted mean diameter at breast height(DBH).NRE increased and was significantly influenced by species richness and DBH,while PRE was relatively stable along forest succession.Thus,the NRE:PRE ratios significantly increased,indicating that N limitation is exacerbated with the temperate forest succession.These results might reflect the intense interspecific competition for limiting resource in a higher biodiversity community.In conclusion,our findings highlight the importance of biotic factors in driving forest ecosystem nutrient cycling and provide valuable information for sustainable fertilizer management practices in China's temperate and boreal forests. 展开更多
关键词 abiotic and biotic factors forest succession N limitation N:P ratio nutrient resorption efficiency temperate forest
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部