Wetlands are highly productive natural ecosystems, providing valuable goods and services. There is growing interest in transferring ecosystem service value from the existing wetlands studied to other wetlands ecosyste...Wetlands are highly productive natural ecosystems, providing valuable goods and services. There is growing interest in transferring ecosystem service value from the existing wetlands studied to other wetlands ecosystems at a large geographic scale. The benefit transfer method uses the known values from wetlands to predict the value of other wetland sites. This methodology requires only limited time and resources. The present study calculated the value of the ecological services provided by lake and marsh wetlands in China in terms of biodiversity indices, water quality indices and economic indices. Basic data on wetlands were obtained through remote sensing images. The results show that: 1) The total ecosystem service value of the lake and marsh wetlands in 2008 was calculated to be 8.1841 × 1010 United States Dollars(USD), with the marsh and lake wetlands contributing 5.6329 × 1010 and 2.5512 × 1010 USD, respectively. Values of marsh ecosystem service were concentrated in Heilongjiang Province(2.5516 × 1010 USD), Qinghai Province(1.2014 × 1010 USD), and Inner Mongolia Autonomous Region(1.1884 × 1010 USD). The value of the lakes were concentrated in Tibet Autonomous Region(6.223 × 109 USD), Heilongjiang(5.810 × 109 USD), and Qinghai(5.500 × 109 USD). 2) Waste treatment and climate regulation services contributed to 26.29% and 24.74% respectively, of the total ecosystem service value of the marsh wetlands. Hydrological regulation and waste treatment contributed to 41.39% and 32.75%, respectively, of the total ecosystem service value of the lake wetlands. 3) The total ecological service value of the lake and marsh wetlands was 54.64% of the total service value of natural grassland ecosystems and 30.34% of the total service value of forests ecosystems in China.展开更多
In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within t...In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the A1B scenario, it is reported that temperature, precipitation, days of heat waves, and extreme precipitation intensity will increase at respective rates of 0.38℃ per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.展开更多
基金Under the auspices of Forestry Public Interest Research Program(No.201204201)National Natural Science Foundation of China(No.41171415)
文摘Wetlands are highly productive natural ecosystems, providing valuable goods and services. There is growing interest in transferring ecosystem service value from the existing wetlands studied to other wetlands ecosystems at a large geographic scale. The benefit transfer method uses the known values from wetlands to predict the value of other wetland sites. This methodology requires only limited time and resources. The present study calculated the value of the ecological services provided by lake and marsh wetlands in China in terms of biodiversity indices, water quality indices and economic indices. Basic data on wetlands were obtained through remote sensing images. The results show that: 1) The total ecosystem service value of the lake and marsh wetlands in 2008 was calculated to be 8.1841 × 1010 United States Dollars(USD), with the marsh and lake wetlands contributing 5.6329 × 1010 and 2.5512 × 1010 USD, respectively. Values of marsh ecosystem service were concentrated in Heilongjiang Province(2.5516 × 1010 USD), Qinghai Province(1.2014 × 1010 USD), and Inner Mongolia Autonomous Region(1.1884 × 1010 USD). The value of the lakes were concentrated in Tibet Autonomous Region(6.223 × 109 USD), Heilongjiang(5.810 × 109 USD), and Qinghai(5.500 × 109 USD). 2) Waste treatment and climate regulation services contributed to 26.29% and 24.74% respectively, of the total ecosystem service value of the marsh wetlands. Hydrological regulation and waste treatment contributed to 41.39% and 32.75%, respectively, of the total ecosystem service value of the lake wetlands. 3) The total ecological service value of the lake and marsh wetlands was 54.64% of the total service value of natural grassland ecosystems and 30.34% of the total service value of forests ecosystems in China.
基金supported by the Special Climate Change Research Program of China Meteorological Administration(No.CCSF-2010-04)
文摘In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the A1B scenario, it is reported that temperature, precipitation, days of heat waves, and extreme precipitation intensity will increase at respective rates of 0.38℃ per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.