The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and...The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and FPAR data over Northeast China, the correlations between corn-canopy FPAR and hyperspectral reflectance were analyzed, and the FPAR estimation performances using vegetation index (VI) and neural network (NN) methods with different two-band-combination hyperspectral reflectance were investigated. The results indicated that the corn-canopy FPAR retained almost a constant value in an entire day. The negative correlations between FPAR and visible and shortwave infrared reflectance (SWIR) bands are stronger than the positive correlations between FPAR and near-infrared band re- flectance (NIR). For the six VIs, the normalized difference vegetation index (NDVI) and simple ratio (SR) performed best for estimating corn FPAR (the maximum R2 of 0.8849 and 0.8852, respectively). However, the NN method esti- mated results (the maximum Rz is 0.9417) were obviously better than all of the VIs. For NN method, the two-band combinations showing the best corn FPAR estimation performances were from the NIR and visible bands; for VIs, however, they were from the SWIR and NIR bands. As for both the methods, the SWIR band performed exceptionally well for corn FPAR estimation. This may be attributable to the fact that the reflectance of the SWIR band were strongly controlled by leaf water content, which is a key component of corn photosynthesis and greatly affects the absorption of photosynthetically active radiation (APAR), and makes further impact on corn-canopy FPAR.展开更多
In this study, the quadrat method was used to study the effects of tsaoko (Fructus tsaoko) plantation on tree diversity and canopy structure of two natural habitats of eastern hoolock gibbon (Hoolock leuconedys):...In this study, the quadrat method was used to study the effects of tsaoko (Fructus tsaoko) plantation on tree diversity and canopy structure of two natural habitats of eastern hoolock gibbon (Hoolock leuconedys): Nankang (characterized by extensive tsaoko plantation) and Banchang (relatively well reserved and without tsaoko plantation). Totally, 102 tree species from 25 families and 16 woody liana species from 10 families were recorded in Nankang, whereas 108 tree species from 30 families and 17 woody liana species from 12 families were recorded in Banchang. Although the tree species between two habitats is different, both habitats are characterized by enriched food resources for eastern hoolock gibbons, sharing similar dominant plant families. Due to tsaoko plantation, tree density proportion and diversity of forest layer I (〉20 m) in Nankang were both significantly decreased, but the tree density of layerH (10-20 m) increased. Likewise, in conjunction with these behavioral observations, we also address potential impacts of tsaoko plantation on the behavior of eastern hoolock gibbon.展开更多
Assume that an oasis and its surrounding desert consist of an isolated system without mass and energy exchange with the outer environment.The characteristics of oasis evolution have been explored under the condition o...Assume that an oasis and its surrounding desert consist of an isolated system without mass and energy exchange with the outer environment.The characteristics of oasis evolution have been explored under the condition of system energy conservation.The results show that oasis evolves with two equilibrium states.The first equilibrium suggests a stable expansive and an unstable degraded oasis whereas the second equilibrium indicates a stable shrink and an unstable increase of the oasis area.If one equilibrium state is unstable,the components of the isolated system(oasis and desert) would tend to be no energy exchange and they each reach to energy balance respectively.Oasis would maintain its initial area in this case.Further analyses point out that the two equilibrium states have completely different characteristics.In the first equilibrium state,a higher vegetation albedo,lower soil albedo and larger canopy resistance,and direr soil both contribute to the oasis area expansion,accompanying an excessive large desert soil and vegetation canopy temperature difference(SCTD).In the second equilibrium state,however,a lower vegetation albedo,higher soil albedo and small canopy resistance,and wetter soil benefit the oasis area to stay near its initial value,following a moderate SCTD.The convergent trajectories of the initial values in phase space are influenced by the separatrices of the equilibrium points.Higher temperature is an advantage factor for initial values convergent to the oasis expansion solution.展开更多
基金Under the auspices of National Key Research Program of Global Change Research (No.2010CB951302)National Natural Science Fundation of China (No.40771146)China Postdoctoral Science Foundation Funded Project (No.07Z7601MZ1)
文摘The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and FPAR data over Northeast China, the correlations between corn-canopy FPAR and hyperspectral reflectance were analyzed, and the FPAR estimation performances using vegetation index (VI) and neural network (NN) methods with different two-band-combination hyperspectral reflectance were investigated. The results indicated that the corn-canopy FPAR retained almost a constant value in an entire day. The negative correlations between FPAR and visible and shortwave infrared reflectance (SWIR) bands are stronger than the positive correlations between FPAR and near-infrared band re- flectance (NIR). For the six VIs, the normalized difference vegetation index (NDVI) and simple ratio (SR) performed best for estimating corn FPAR (the maximum R2 of 0.8849 and 0.8852, respectively). However, the NN method esti- mated results (the maximum Rz is 0.9417) were obviously better than all of the VIs. For NN method, the two-band combinations showing the best corn FPAR estimation performances were from the NIR and visible bands; for VIs, however, they were from the SWIR and NIR bands. As for both the methods, the SWIR band performed exceptionally well for corn FPAR estimation. This may be attributable to the fact that the reflectance of the SWIR band were strongly controlled by leaf water content, which is a key component of corn photosynthesis and greatly affects the absorption of photosynthetically active radiation (APAR), and makes further impact on corn-canopy FPAR.
基金supported by the National Natural Science Foundation of China(31160424)Natural Science Foundation of Yunnan Province(20110426)Science Foundation Project of Mt.Gaoligong National Natural Reserve(201215)
文摘In this study, the quadrat method was used to study the effects of tsaoko (Fructus tsaoko) plantation on tree diversity and canopy structure of two natural habitats of eastern hoolock gibbon (Hoolock leuconedys): Nankang (characterized by extensive tsaoko plantation) and Banchang (relatively well reserved and without tsaoko plantation). Totally, 102 tree species from 25 families and 16 woody liana species from 10 families were recorded in Nankang, whereas 108 tree species from 30 families and 17 woody liana species from 12 families were recorded in Banchang. Although the tree species between two habitats is different, both habitats are characterized by enriched food resources for eastern hoolock gibbons, sharing similar dominant plant families. Due to tsaoko plantation, tree density proportion and diversity of forest layer I (〉20 m) in Nankang were both significantly decreased, but the tree density of layerH (10-20 m) increased. Likewise, in conjunction with these behavioral observations, we also address potential impacts of tsaoko plantation on the behavior of eastern hoolock gibbon.
基金supported by the National Basic Research Program of China(Grant No.2014CB953903)the Fundamental Research Funds for the Central Universities(Grant No.2013YB45)
文摘Assume that an oasis and its surrounding desert consist of an isolated system without mass and energy exchange with the outer environment.The characteristics of oasis evolution have been explored under the condition of system energy conservation.The results show that oasis evolves with two equilibrium states.The first equilibrium suggests a stable expansive and an unstable degraded oasis whereas the second equilibrium indicates a stable shrink and an unstable increase of the oasis area.If one equilibrium state is unstable,the components of the isolated system(oasis and desert) would tend to be no energy exchange and they each reach to energy balance respectively.Oasis would maintain its initial area in this case.Further analyses point out that the two equilibrium states have completely different characteristics.In the first equilibrium state,a higher vegetation albedo,lower soil albedo and larger canopy resistance,and direr soil both contribute to the oasis area expansion,accompanying an excessive large desert soil and vegetation canopy temperature difference(SCTD).In the second equilibrium state,however,a lower vegetation albedo,higher soil albedo and small canopy resistance,and wetter soil benefit the oasis area to stay near its initial value,following a moderate SCTD.The convergent trajectories of the initial values in phase space are influenced by the separatrices of the equilibrium points.Higher temperature is an advantage factor for initial values convergent to the oasis expansion solution.