In 1987,a catastrophic fire burned over 1330000 ha in the densely forested area of the Da Hinggan Mountains in the northeastern China.After the fire,intensive management including burned trunk harvesting and coniferou...In 1987,a catastrophic fire burned over 1330000 ha in the densely forested area of the Da Hinggan Mountains in the northeastern China.After the fire,intensive management including burned trunk harvesting and coniferous tree planting had been conducted to accelerate forest restoration.To study the long term effect of these activities on forest recovery,we used a simulation modeling approach to study long-term(300 years) forest dynamics under current planting and natural regeneration scenarios.Results indicate that under tree planting scenario in the severely burned area,the dominant species Dahurian larch(Larix gmelinii) can reach pre-fire level(60% of the area) within 20 years and the maximum abundance can reach nearly 90% within 100 years.While under natural regeneration scenario,it needs about 250 years to reach its pre-fire level.From the perspective of timber production,tree planting can bring twice as much timber volume as that under natural regeneration within 300 years,which is the average longevity of L.gmelinii.It needs about 70 years to reach the timber volume of pre-fire level under the planting scenario,whereas it requires at least 250 years to reach the timber volume of pre-fire level under natural regeneration scenario.Another dominant species Asian White birch(Betula platyphylla) responded negatively to the planting of coniferous species.In general,tree planting of coniferous species after fire can greatly accelerate forest restoration in terms of species abundance and target timber volume,with desirable ecological and economic returns.展开更多
基金Under the auspices of National Natural Science Foundation of China (No 30270225, 40871245, 40331008, 40671013)
文摘In 1987,a catastrophic fire burned over 1330000 ha in the densely forested area of the Da Hinggan Mountains in the northeastern China.After the fire,intensive management including burned trunk harvesting and coniferous tree planting had been conducted to accelerate forest restoration.To study the long term effect of these activities on forest recovery,we used a simulation modeling approach to study long-term(300 years) forest dynamics under current planting and natural regeneration scenarios.Results indicate that under tree planting scenario in the severely burned area,the dominant species Dahurian larch(Larix gmelinii) can reach pre-fire level(60% of the area) within 20 years and the maximum abundance can reach nearly 90% within 100 years.While under natural regeneration scenario,it needs about 250 years to reach its pre-fire level.From the perspective of timber production,tree planting can bring twice as much timber volume as that under natural regeneration within 300 years,which is the average longevity of L.gmelinii.It needs about 70 years to reach the timber volume of pre-fire level under the planting scenario,whereas it requires at least 250 years to reach the timber volume of pre-fire level under natural regeneration scenario.Another dominant species Asian White birch(Betula platyphylla) responded negatively to the planting of coniferous species.In general,tree planting of coniferous species after fire can greatly accelerate forest restoration in terms of species abundance and target timber volume,with desirable ecological and economic returns.