The ecological effects of plant-virus-vector interactions on invasion of alien plant viral vectors have been rarely investigated. We examined the transmission of Tomato yellow leaf cur/China virus (TYLCCNV) by the i...The ecological effects of plant-virus-vector interactions on invasion of alien plant viral vectors have been rarely investigated. We examined the transmission of Tomato yellow leaf cur/China virus (TYLCCNV) by the invasive Q biotype and the indigenous ZHJ2 biotype of the whitefly Bemisia tabaci, a plant viral vector, as well as the influence of TYLCCNV-infection of plants on the performance of the two whitefly biotypes. Both whitefly biotypes were able to acquire viruses from infected plants and retained them in their bodies, but were unable to transmit them to either tobacco or tomato plants. However, when the Q biotype fed on tobacco plants infected with TYLCCNV, its fecundity and longevity were increased by 7- and 1-fold, respectively, compared to those of the Q biotype fed on uninfected tobacco plants. When the ZHJ2 biotype fed on virus-infected plants, its fecundity and longevity were increased by only 2- and 0.5-fold, respectively. These data show that the Q biotype acquired higher beneficial effects from TYLCCNV-infection of tobacco plants than the ZHJ2 biotype. Thus, the Q biotype whitefly may have advantages in its invasion and displacement of the indigenous ZHJ2 biotype.展开更多
Tailings of a Pb and Zn mine as a metal-contaminated area (Zone 1) with two pioneer plant species, Peganum harmala and Zygophyllum fabago, were investigated and compared with a non-contaminated area (Zone 2) in th...Tailings of a Pb and Zn mine as a metal-contaminated area (Zone 1) with two pioneer plant species, Peganum harmala and Zygophyllum fabago, were investigated and compared with a non-contaminated area (Zone 2) in the vicinity. Total concentrations of Pb, Zn, and Cu in the soil of Zone 1 were 1 416, 2 217, and 426 mg kg-1, respectively, and all exceeded their ranges in the normal soils. The soil pH was in the neutral range and most of the physical and chemical characteristics of the soils from both zones were almost similar. The species Z. fabago accumulated higher Cu and Zn in its aerial part and roots than the normal plants. On the other hand, their concentrations did not reach the criteria that the species could be considered as a metal hyperaccumulator. The species P. harmala did not absorb metals in its roots; accordingly, the accumulation factor values of these metals were lower than 1. The contents of chlorophyll, biomass, malondialdehyde, and dityrosine in these two species did not vary significantly between the two zones studied. In Zone 1, leaf vacuoles of Z. fabago stored 35.6% and 43.2% of the total leaf Cu and Zn, respectively. However, in this species, the levels of phytochelatins (PCs) and glutathione (GSH) and antioxidant enzyme activities were significantly higher in Zone 1 than in Zone 2. In conclusion, metal exclusion in P. harmala and metal accumulation in Z. fabago were the basic strategies in the two studied pioneer species growing on the metal-contaminated zone. In response to metal stress, elevation in antioxidant enzyme activities, increases in the PCs and GSH levels in the aerial parts, and metal storage within vacuoles counteracted each other in the invasion mechanism of Z. ]abago.展开更多
基金supported by the National Natural Science Foundation of China (No.30730061)the National Basic Research Program (973) of China (No.2009CB119203)the Zhejiang Provincial Key Agricultural Project (No.2007C12045),China
文摘The ecological effects of plant-virus-vector interactions on invasion of alien plant viral vectors have been rarely investigated. We examined the transmission of Tomato yellow leaf cur/China virus (TYLCCNV) by the invasive Q biotype and the indigenous ZHJ2 biotype of the whitefly Bemisia tabaci, a plant viral vector, as well as the influence of TYLCCNV-infection of plants on the performance of the two whitefly biotypes. Both whitefly biotypes were able to acquire viruses from infected plants and retained them in their bodies, but were unable to transmit them to either tobacco or tomato plants. However, when the Q biotype fed on tobacco plants infected with TYLCCNV, its fecundity and longevity were increased by 7- and 1-fold, respectively, compared to those of the Q biotype fed on uninfected tobacco plants. When the ZHJ2 biotype fed on virus-infected plants, its fecundity and longevity were increased by only 2- and 0.5-fold, respectively. These data show that the Q biotype acquired higher beneficial effects from TYLCCNV-infection of tobacco plants than the ZHJ2 biotype. Thus, the Q biotype whitefly may have advantages in its invasion and displacement of the indigenous ZHJ2 biotype.
基金Supported by the Tarbiat Moallem University,Iran
文摘Tailings of a Pb and Zn mine as a metal-contaminated area (Zone 1) with two pioneer plant species, Peganum harmala and Zygophyllum fabago, were investigated and compared with a non-contaminated area (Zone 2) in the vicinity. Total concentrations of Pb, Zn, and Cu in the soil of Zone 1 were 1 416, 2 217, and 426 mg kg-1, respectively, and all exceeded their ranges in the normal soils. The soil pH was in the neutral range and most of the physical and chemical characteristics of the soils from both zones were almost similar. The species Z. fabago accumulated higher Cu and Zn in its aerial part and roots than the normal plants. On the other hand, their concentrations did not reach the criteria that the species could be considered as a metal hyperaccumulator. The species P. harmala did not absorb metals in its roots; accordingly, the accumulation factor values of these metals were lower than 1. The contents of chlorophyll, biomass, malondialdehyde, and dityrosine in these two species did not vary significantly between the two zones studied. In Zone 1, leaf vacuoles of Z. fabago stored 35.6% and 43.2% of the total leaf Cu and Zn, respectively. However, in this species, the levels of phytochelatins (PCs) and glutathione (GSH) and antioxidant enzyme activities were significantly higher in Zone 1 than in Zone 2. In conclusion, metal exclusion in P. harmala and metal accumulation in Z. fabago were the basic strategies in the two studied pioneer species growing on the metal-contaminated zone. In response to metal stress, elevation in antioxidant enzyme activities, increases in the PCs and GSH levels in the aerial parts, and metal storage within vacuoles counteracted each other in the invasion mechanism of Z. ]abago.