期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于TensorRT的植物叶片病害实时检测分类模型优化
被引量:
2
1
作者
徐泽华
李坚孝
+3 位作者
邓树源
吴家隐
高嘉晖
潘明毅
《计算机系统应用》
2023年第2期94-101,共8页
为了提高边缘计算设备对植物叶片病害检测的识别速率,本研究采用卷积神经网络搭建了植物叶片目标识别模型和植物叶片病害分类模型,并且使用OpenCV将两个模型整合成植物叶片病害检测系统.通过SSD(single shot multibox detector)算法对...
为了提高边缘计算设备对植物叶片病害检测的识别速率,本研究采用卷积神经网络搭建了植物叶片目标识别模型和植物叶片病害分类模型,并且使用OpenCV将两个模型整合成植物叶片病害检测系统.通过SSD(single shot multibox detector)算法对植物叶片的目标区域进行定位并裁剪,再利用植物叶片病害分类模型对裁剪的植物叶片区域进行病害分类.同时,通过TensorRT加速推理对分类模型进行优化处理,以及在同一台主机设备和Jetson Nano计算平台上,对优化前后的模型进行了对比实验.实验表明,在同一主机设备上优化后的植物分类模型识别速率提升22倍.同时,优化后的分类模型使植物叶片病害检测系统识别速率提升7倍.而将优化后的系统部署在Jetson Nano计算平台上,对比优化前的植物叶片病害检测速率提升10倍,实现了实时的植物叶片病害检测.
展开更多
关键词
卷积神经网络(CNN)
植物叶片检测
OPENCV
TensorRT
下载PDF
职称材料
题名
基于TensorRT的植物叶片病害实时检测分类模型优化
被引量:
2
1
作者
徐泽华
李坚孝
邓树源
吴家隐
高嘉晖
潘明毅
机构
五邑大学智能制造学部
广东邮电职业技术学院计算机学院
出处
《计算机系统应用》
2023年第2期94-101,共8页
基金
广东邮电职业技术学院校级质量工程项目(202201)
广东省职业技术教育学会第四届理事会科研规划项目(202103G93)
2022年度广东省普通高校特色创新类项目(2022KTSCX288)。
文摘
为了提高边缘计算设备对植物叶片病害检测的识别速率,本研究采用卷积神经网络搭建了植物叶片目标识别模型和植物叶片病害分类模型,并且使用OpenCV将两个模型整合成植物叶片病害检测系统.通过SSD(single shot multibox detector)算法对植物叶片的目标区域进行定位并裁剪,再利用植物叶片病害分类模型对裁剪的植物叶片区域进行病害分类.同时,通过TensorRT加速推理对分类模型进行优化处理,以及在同一台主机设备和Jetson Nano计算平台上,对优化前后的模型进行了对比实验.实验表明,在同一主机设备上优化后的植物分类模型识别速率提升22倍.同时,优化后的分类模型使植物叶片病害检测系统识别速率提升7倍.而将优化后的系统部署在Jetson Nano计算平台上,对比优化前的植物叶片病害检测速率提升10倍,实现了实时的植物叶片病害检测.
关键词
卷积神经网络(CNN)
植物叶片检测
OPENCV
TensorRT
Keywords
convolutional neural network(CNN)
plant leaf detection
OpenCV
TensorRT
分类号
S432 [农业科学—植物病理学]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于TensorRT的植物叶片病害实时检测分类模型优化
徐泽华
李坚孝
邓树源
吴家隐
高嘉晖
潘明毅
《计算机系统应用》
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部