Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recogni...Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recognized four different vertical distribution patterns of pigments: chlorophyll a (Chl a)-like type, divinyl chlorophyll a (DV Chl a) type, even distribution type, and surface type. The average value of ratios of accessory photo-protective pigments (APP) to accessory photo-synthetic pigments was 0.89±0.63 in the upper 50 m and 0.16±0.06 below 50 m depth. With increasing depth, APP decreased and photo-synthetically active radiation was attenuated. There was an obvious succession in the phytoplankton community from inshore to the open sea. Diatoms were dominant in the inshore region, while pelagophytes, Prochlorococcus, cyanobacteria and prymnesiophytes were dominant in the open sea. The vertical distribution of phytoplankton also differed greatly from inshore to the open sea. In the coastal and shelf region, diatoms were important components in the whole water column. Cyanobacteria also had a high abundance at the Subsurface Chlorophyll a Maxima (SCM) in the shelf region. In the slope and open sea, Prochlorococcus and cyanobacteria were important groups above the SCM, while pelagophytes dominated below the SCM.展开更多
The species composition, horizontal distribution and seasonal succession of the phytoplankton at five sampling stations in the channel between Dongting Lake and the Changjiang River, China were studied from May 1995 t...The species composition, horizontal distribution and seasonal succession of the phytoplankton at five sampling stations in the channel between Dongting Lake and the Changjiang River, China were studied from May 1995 to December 1997. A total of 416 taxa were observed; diatoms comprised the most diverse taxonomic group representing 58.2 % of the total species. The β-mesotrophic indicators were 92 taxa or 22 % of the total, the α-mesotrophic or α,β-eutrophic indicators decreased distinctly to 20 taxa or 4.8 % of the total. The species number and composition of various phyla were approximately similar at Stations 1, 2, 3 and 4, but at Station 5 the number of species was the minimum and the ratio of diatoms to total phytoplankton in the number of species was the highest. In seasonal succession of the phytoplankton species, the number was the highest in May and June, lower in December, January, March and July in the channel. The dominant species were different in different months. The ratio of diatoms species number to blue green algae and green algae species number diminished gradually from winter to summer and autumn, and then increased gradually from autumn to winter and early spring in the annual cycle. Margalef, Simpson and Shannon-Weaver diversity indices changed in different months, their values were higher in winter, lower in summer. Nygaard’s diatoms quotients were lower in winter, then in spring and autumn, higher in summer. These results indicated that the water quality was the best in winter, better in spring and autumn than in summer. The relationship between the structure of the phytoplankton community and the water environmental quality was discussed.展开更多
Spatial and vertical distribution of phytoplankton community were examined in the coast of the south of the Kerkennah Islands at three different depths 0, 2 and 6 m during the winter 2009 at 6 sampling stations. A tot...Spatial and vertical distribution of phytoplankton community were examined in the coast of the south of the Kerkennah Islands at three different depths 0, 2 and 6 m during the winter 2009 at 6 sampling stations. A total of 49 taxa belonging to five phytoplankton groups were identified (H'=1.7 to 3.5 bits'cell^-1). Dinoflagellates and Diatoms were the most abundant phytoplankton groups which reached 27 and 71% of total abundance, respectively. The spatial distribution of the phytoplankton abundance showed a significant variation between the stations (P 〈 0.001). While the vertical distribution of total phytoplankton showed a clear pattem, ANOVA test showed only an insignificant variation between the different depths at each station (P 〉 0.01). On the whole, the maximum abundance of phytoplankton was recorded at the depths of 2 and 6 m (6 ×10^3 ind..Ll). This might be due to the decrease of the nutrient concentrations in deeper water specially those of phosphate.展开更多
基金Supported by the Key Program of National Natural Science Foundation of China (No. 90711006)
文摘Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recognized four different vertical distribution patterns of pigments: chlorophyll a (Chl a)-like type, divinyl chlorophyll a (DV Chl a) type, even distribution type, and surface type. The average value of ratios of accessory photo-protective pigments (APP) to accessory photo-synthetic pigments was 0.89±0.63 in the upper 50 m and 0.16±0.06 below 50 m depth. With increasing depth, APP decreased and photo-synthetically active radiation was attenuated. There was an obvious succession in the phytoplankton community from inshore to the open sea. Diatoms were dominant in the inshore region, while pelagophytes, Prochlorococcus, cyanobacteria and prymnesiophytes were dominant in the open sea. The vertical distribution of phytoplankton also differed greatly from inshore to the open sea. In the coastal and shelf region, diatoms were important components in the whole water column. Cyanobacteria also had a high abundance at the Subsurface Chlorophyll a Maxima (SCM) in the shelf region. In the slope and open sea, Prochlorococcus and cyanobacteria were important groups above the SCM, while pelagophytes dominated below the SCM.
文摘The species composition, horizontal distribution and seasonal succession of the phytoplankton at five sampling stations in the channel between Dongting Lake and the Changjiang River, China were studied from May 1995 to December 1997. A total of 416 taxa were observed; diatoms comprised the most diverse taxonomic group representing 58.2 % of the total species. The β-mesotrophic indicators were 92 taxa or 22 % of the total, the α-mesotrophic or α,β-eutrophic indicators decreased distinctly to 20 taxa or 4.8 % of the total. The species number and composition of various phyla were approximately similar at Stations 1, 2, 3 and 4, but at Station 5 the number of species was the minimum and the ratio of diatoms to total phytoplankton in the number of species was the highest. In seasonal succession of the phytoplankton species, the number was the highest in May and June, lower in December, January, March and July in the channel. The dominant species were different in different months. The ratio of diatoms species number to blue green algae and green algae species number diminished gradually from winter to summer and autumn, and then increased gradually from autumn to winter and early spring in the annual cycle. Margalef, Simpson and Shannon-Weaver diversity indices changed in different months, their values were higher in winter, lower in summer. Nygaard’s diatoms quotients were lower in winter, then in spring and autumn, higher in summer. These results indicated that the water quality was the best in winter, better in spring and autumn than in summer. The relationship between the structure of the phytoplankton community and the water environmental quality was discussed.
文摘Spatial and vertical distribution of phytoplankton community were examined in the coast of the south of the Kerkennah Islands at three different depths 0, 2 and 6 m during the winter 2009 at 6 sampling stations. A total of 49 taxa belonging to five phytoplankton groups were identified (H'=1.7 to 3.5 bits'cell^-1). Dinoflagellates and Diatoms were the most abundant phytoplankton groups which reached 27 and 71% of total abundance, respectively. The spatial distribution of the phytoplankton abundance showed a significant variation between the stations (P 〈 0.001). While the vertical distribution of total phytoplankton showed a clear pattem, ANOVA test showed only an insignificant variation between the different depths at each station (P 〉 0.01). On the whole, the maximum abundance of phytoplankton was recorded at the depths of 2 and 6 m (6 ×10^3 ind..Ll). This might be due to the decrease of the nutrient concentrations in deeper water specially those of phosphate.