期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
高质量植物基因组DNA的提取 被引量:73
1
作者 黄晓丹 张云贵 应铁进 《植物生理学通讯》 CSCD 北大核心 2006年第2期311-314,共4页
文章就实验材料处理,细胞裂解方法的选择以及蛋白质、次生物质和RNA的去除等5个方面对提高植物基因组DNA的提取质量作了介绍。
关键词 植物基因组dna提取 细胞裂解 蛋白质去除 次生物质去除 RNA去除
下载PDF
植物基因组DNA提取与纯化研究进展 被引量:32
2
作者 孙璐宏 鲁周民 张丽 《西北林学院学报》 CSCD 北大核心 2010年第6期102-106,共5页
对近年来植物基因组DNA的提取方法与纯化方法的研究进展进行综合评述,并比较了不同提取及纯化方法的优缺点,旨在为植物基因组DNA的研究提供技术参考。
关键词 植物基因组dna 提取 纯化
下载PDF
分离芸芥植物基因组DNA的一种方法 被引量:9
3
作者 钟军 李木旬 《生物技术》 CAS CSCD 2002年第5期18-19,共2页
介绍一种能较好地分离植物基因组DNA的方法———SDS法。通过不同芸芥植物材料的多次实验 ,证明该方法分离芸芥的基因组DNA产率 (7 5 μg/gFW)、纯度 (OD2 60 =1 7- 1 9)和分子量 (5 0kb左右 )都较高 ,完全能满足RAPD分析的需要。与目... 介绍一种能较好地分离植物基因组DNA的方法———SDS法。通过不同芸芥植物材料的多次实验 ,证明该方法分离芸芥的基因组DNA产率 (7 5 μg/gFW)、纯度 (OD2 60 =1 7- 1 9)和分子量 (5 0kb左右 )都较高 ,完全能满足RAPD分析的需要。与目前普遍使用的CTAB法相比 ,SDS法简单、快速、成本低。 展开更多
关键词 分离 芸芥 植物基因组dna SDS法
下载PDF
一种改良的植物基因组DNA通用提取方法 被引量:16
4
作者 陈林杨 宋敏舒 +1 位作者 查红光 李志敏 《植物分类与资源学报》 CAS CSCD 北大核心 2014年第3期375-380,共6页
高质量的基因组DNA是分子生物学研究的基础,而从富含糖类和次生代谢物且异质性强的植物材料中分离DNA相对困难。本方法在CTAB法和商业DNA提取试剂盒的基础上,在裂解细胞之前,对植物材料进行预处理,去除干扰DNA提取的代谢物,并在后续步... 高质量的基因组DNA是分子生物学研究的基础,而从富含糖类和次生代谢物且异质性强的植物材料中分离DNA相对困难。本方法在CTAB法和商业DNA提取试剂盒的基础上,在裂解细胞之前,对植物材料进行预处理,去除干扰DNA提取的代谢物,并在后续步骤中进行了一些优化。该方法适于多种不同的植物种类,所提取的基因组DNA质量较好,能满足下一步基因操作的要求,是一种通用的植物基因组DNA提取方法。 展开更多
关键词 植物基因组dna 通用dna提取方法 植物材料
原文传递
食品中植物基因组DNA提取纯化方法研究进展 被引量:4
5
作者 凌莉 李志勇 +3 位作者 黄韵 刘津 张隽 高东微 《食品科技》 CAS 北大核心 2012年第5期6-10,15,共6页
选择合适的植物基因组DNA提取和纯化方法,从食品中分离纯化出纯度高、数量足的植物基因组DNA,是进行食品基因检测首要考虑的重要问题之一。为此,对植物基因组DNA提取纯化技术的经典传统方法和技术研发应用新动向、以及商业化试剂产品的... 选择合适的植物基因组DNA提取和纯化方法,从食品中分离纯化出纯度高、数量足的植物基因组DNA,是进行食品基因检测首要考虑的重要问题之一。为此,对植物基因组DNA提取纯化技术的经典传统方法和技术研发应用新动向、以及商业化试剂产品的开发应用情况做一初步的归类小结,以为从事这方面研究的科研人员和可能应用这些技术的检测人员提供一定的信息参考。 展开更多
关键词 食品 植物基因组dna 提取 纯化
原文传递
遗传学实验探究性教学模式的构建——以小麦基因组DNA提取方法为例
6
作者 蔡健 《阜阳师范学院学报(自然科学版)》 2014年第1期97-98,107,共3页
以大学《遗传学实验教程》中的植物基因组DNA提取方法为教学内容,通过自主探究、合作探究、展示点评和总结提升"四步教学法"的实施,构建了遗传学实验的探究性教学模式,其结果对于培养学生的创新思维和创新能力具有积极的作用。
关键词 植物基因组dna 遗传学实验教学 四步教学法 探究性教学模式
下载PDF
The Distribution of Repetitive DNAs Along Chromosomes in Plants Revealed by Self-genomic in situ Hybridization 被引量:4
7
作者 佘朝文 刘静宇 +2 位作者 刁英 胡中立 宋运淳 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第5期437-448,共12页
The distribution of repetitive DNAs along chromosomes is one of the crucial elements for understanding the organization and the evolution of plant genomes. Using a modified genomic in situ hybridization (GISH) proce... The distribution of repetitive DNAs along chromosomes is one of the crucial elements for understanding the organization and the evolution of plant genomes. Using a modified genomic in situ hybridization (GISH) procedure, fluorescence in situ hybridization (FISH) with genomic DNA to their own chromosomes (called self-genomic in situ hybridization, self-GISH) was carried out in six selected plant species with different genome size and amount of repetitive DNA. Nonuniform distribution of the fluorescent labeled probe DNA was observed on the chromosomes of all the species that were tested. The signal patterns varied among species and were related to the genome size. The chromosomes of the small Arabidopsis genome were labeled almost only in the pericentromeric regions and the nucleolus organizer regions (NORs). The signals in the relatively small genomes, rice, sorghum, and Brassica oleracea var. capitata L., were dispersed along the chromosome lengths, with a predominant distribution in the pericentromeric or proximal regions and some heterochromatic arms. All chromosomes of the large genomes, maize and barley, were densely labeled with strongly labeled regions and weakly labeled or unlabeled regions being arranged alternatively throughout the lengths. In addition, enhanced signal bands were shown in all pericentromeres and the NORs in B. oleracea var. capitata, and in all pericentromeric regions and certain intercalary sites in barley. The enhanced signal band pattern in barley was found consistent with the N-banding pattern of this species. The GISH with self-genomic DNA was compared with FISH with Cot-1 DNA in rice, and their signal patterns are found to be basically consistent. Our results showed that the self-GISH signals actually reflected the hybridization of genomic repetitive DNAs to the chromosomes, thus the self-GISH technique would be useful for revealing the distribution of the regions where repetitive DNAs concentrate along chromosomes and some chromatin differentiation associated with repetitive DNAs in plants. 展开更多
关键词 self-genomic in situ hybridization (self-GISH) plant genome repetitive dna chromatin differentiation genome organization
下载PDF
Comparative Analysis of EST Mining Reveals High Degree of Conservation among Eight Leguminosae Species
8
作者 Jyotika Bhati Hariharan Chandrasekaran Suresh Chand 《Journal of Agricultural Science and Technology(B)》 2013年第6期447-458,共12页
Fabaceae is the third largest family of flowering plants and is unique among crops in their ability of fixing atmospheric nitrogen. Fabaceae is one of the few plant families with extensive genomic data available in mu... Fabaceae is the third largest family of flowering plants and is unique among crops in their ability of fixing atmospheric nitrogen. Fabaceae is one of the few plant families with extensive genomic data available in multiple species. The unprecedented complexity and impending completeness of these data create opportunities for discovering new approaches. The Legume and Medicago share much-conserved colinearity between their genomes which can be exploited for the genomic research in Leguminosae crops. In this study, 1,952,191 ESTs of 8 Leguminosae species were clustered into unigenes contigs and compared with Medicago truncatula gene indices. Almost all the unigenes of Leguminosae species showed high similarity with Medicago genes, except for those of Lens culinaris, where 95% of unigenes were found similar. A total of 10,874 SSRs were identified in the unigenes. Functional annotation of unigenes showed that the majority of the genes are present in metabolism and energy functional classes. It is expected that comparative genomic analysis between Medicago and related crop species will expedite research in other Legume species. This would be helpful for genomics as well as evolutionary studies, and the DNA markers developed can be used for mapping, tagging and cloning of specific important genes in Leguminosae. 展开更多
关键词 LEGUMINOSAE ESTS GC content SSR functional annotation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部