In order to investigate a better soilless culture medium and the possibility of grass clippings as alternative substrate for peat moss to grow Begonia cucullata Willd. in pots, the seedlings of widely cultivated B. cu...In order to investigate a better soilless culture medium and the possibility of grass clippings as alternative substrate for peat moss to grow Begonia cucullata Willd. in pots, the seedlings of widely cultivated B. cucullata were grown in pots with eight types of soilless substrates: T1(peat: perlite=1:1), T2(peat: perlite: pine bark=1:1:1), T3(corn stover: perlite: pine bark=1:1:1), T4(corn stover: perlite: pine bark=2:1:1), T5(grass clipping: perlite: pine bark=1:1:1), T6(grass clipping: perlite:pine bark=2:1:1), T7(vermiculite: perlite: pine bark=1:1:1) and T8(vermiculite: perlite: pine bark=2:1:1), respectively, in a shade house of Shanghai Chenshan Botanical Garden to evaluate plant growth performance. The results showed that the stem diameter of B. cucullata increased significantly from day 30 to day 60 after potting,and the plant height, leaf number and leaf area increased largest from day 60 to day 90 after potting in all treatments. The growth of plants performed best in T6,with the highest branch number, leaf thickness, flower number, aboveground fresh and dry weights and relative chlorophyll content. Therefore, the substrate with grass clipping: perlite: pine bark=2:1:1 was the best culture medium for growing B. cucullata in this study, and the grass clippings could replace peat moss as alternative substrate for growing B. cucullata in containers.展开更多
We compared the capacity of composts made from three different sources of organic wastes (horse manure and bedding, mink farm wastes, municipal solid waste (MSW) and sewage sludge), and clarifier solids from a che...We compared the capacity of composts made from three different sources of organic wastes (horse manure and bedding, mink farm wastes, municipal solid waste (MSW) and sewage sludge), and clarifier solids from a chemo-thermomechanical pulp mill, to enhance the growth of tomato seedlings grown in potting soil with little organic matter. Germination and seedling emergence of tomatoes, cress or radish were tested to assess phytotoxicity of the four amendments. Mink farm compost and horse manurecompost stimulated root and shoot growth of tomato seedlings, but MSW compost and pulp mill solids were strongly inhibitory. MSW compost and non-amended potting soil also inhibited seedling emergence and pulp mill solids produced stunting and deformities in radish and cress seedlings. Both toxic constituents and nutrient imbalances may be responsible for the growth-inhibiting effects of these amendments. Application of pulp mill solids to agricultural soil without composting may lead to deleterious effects on vegetable crops.展开更多
In this study, biodiesel was produced from waste vegetable oil using a heterogeneous base catalyst synthesized by impregnating potassium hydroxide(KOH) onto diatomite. Response surface methodology based on a central c...In this study, biodiesel was produced from waste vegetable oil using a heterogeneous base catalyst synthesized by impregnating potassium hydroxide(KOH) onto diatomite. Response surface methodology based on a central composite design was used to optimize four transesterification variables: temperature(30–120 °C), reaction time(2–6 h), methanol to oil mass ratio(10%–50%) and catalyst to oil mass ratio(2.1%–7.9%). A quadratic polynomial equation was obtained to correlate biodiesel yield to the transesterification variables. The diatomite–KOH catalyst was characterized using X-ray diffraction(XRD), Fourier transform infra-red spectroscopy(FTIR) and a scanning electron microscope(SEM) equipped with an energy dispersive X-ray detector(EDS). A maximum biodiesel yield of 90%(by mass) was obtained. The reaction conditions were as follows: methanol to oil mass ratio 30%, catalyst to oil mass ratio 5%, reaction time 4 h, and reaction temperature 75 °C. The XRD, FTIR and SEM(EDS) results confirm that the addition of KOH modifies the structure of diatomite. During impregnation and calcination of the diatomite catalyst the K2 O phase forms in the diatomite structural matrix and the active basicity of this compound facilitates the transesterification process. It is possible to recycle the diatomite–KOH catalyst up to three times. The crucial biodiesel properties from waste vegetable oil are within the American Standard Test Method specifications.展开更多
In this study, pyrolusiteore (MnO2) was subjected to mechanical milling with a high-energy mill with carbonized tea plant wastes and the effect of grinding time on the crystal structure of the material was investiga...In this study, pyrolusiteore (MnO2) was subjected to mechanical milling with a high-energy mill with carbonized tea plant wastes and the effect of grinding time on the crystal structure of the material was investigated. The ratio of Mn/Fe was 8/1, the ratio of C/(MnO2 + Fe3O4) was 2 and the ratio of ball to ore was 10/1. The samples were mechanically ground at 10, 15, 20, 30, 60, 90 and 120 hours. In the processes performed on the attritor, the rotation speed of the mill shaft was determined to be 350 rpm. The results were characterized by TG-DTA, SEM and XRD analyzes. As a result of the experimental studies, it was observed that the samples subjected to mechanical grinding for 120 hours were gradually reduced due to the increasing grinding time at all the diffraction peaks when the XRD peaks were compared with the grinding times. In the thermogravimetric analysis, the sample milled for 120 hours, 50% weight loss was observed at 470 ℃, weight loss of up to 56% was observed at progressive temperatures.展开更多
Biomass plants often struggle to capture flow measurements reliably. High amounts of dry solids and fats complicate the measurement with an MID (Magnetic-Inductive) flowmeter and make it susceptible to faults. To ov...Biomass plants often struggle to capture flow measurements reliably. High amounts of dry solids and fats complicate the measurement with an MID (Magnetic-Inductive) flowmeter and make it susceptible to faults. To overcome this impediment, the waste water treatment plant in Innsbruck, Austria, relies on electromagnetic pulsed AC (Alternating Current) flowmeters. Compared to pulsed DC (Direct Current) devices, AC devices are able to build up magnetic fields that are ten times stronger. Equipped with this capability, the Sitrans Transmag 2 is able to guarantee a constant and also high measuring accuracy, zero point stability and signal strength regardless of impurities in the medium or fluctuations in the magnetic field.展开更多
Investigation was focussed to application of waste POX (partial oxidation), e.g., meal rape in form of suspension in high boiling hydrocarbons from crude oil distillation. There is an opportunity for utilization of ...Investigation was focussed to application of waste POX (partial oxidation), e.g., meal rape in form of suspension in high boiling hydrocarbons from crude oil distillation. There is an opportunity for utilization of biomass waste resulted from fuels bio-components production. A decrease of oxygen and water steam demand in feed for POX process was observed in this variant. Catalytic effect of iron nanoparticles or nickel nitrate as catalysts in improvement of the pilot plant biomass/oil partial oxidation was investigated as well. Presence of catalyst in the feed supports formation of carbon monoxide and suppression content of methane in the gas product. Experimental data were well compared with process simulation based on eauilibrium reactor model.展开更多
基金Supported by the Science and Technology Project of Shanghai Municipal Greening and City Appearance Administration(F112421)Foundation of Science and Technology Commission of Shanghai Municipality(14DZ2260400)Environmental Protection Science and Technology Project of Hunan Province(XCJZ[2012]347,XCJZ[2013]229)~~
文摘In order to investigate a better soilless culture medium and the possibility of grass clippings as alternative substrate for peat moss to grow Begonia cucullata Willd. in pots, the seedlings of widely cultivated B. cucullata were grown in pots with eight types of soilless substrates: T1(peat: perlite=1:1), T2(peat: perlite: pine bark=1:1:1), T3(corn stover: perlite: pine bark=1:1:1), T4(corn stover: perlite: pine bark=2:1:1), T5(grass clipping: perlite: pine bark=1:1:1), T6(grass clipping: perlite:pine bark=2:1:1), T7(vermiculite: perlite: pine bark=1:1:1) and T8(vermiculite: perlite: pine bark=2:1:1), respectively, in a shade house of Shanghai Chenshan Botanical Garden to evaluate plant growth performance. The results showed that the stem diameter of B. cucullata increased significantly from day 30 to day 60 after potting,and the plant height, leaf number and leaf area increased largest from day 60 to day 90 after potting in all treatments. The growth of plants performed best in T6,with the highest branch number, leaf thickness, flower number, aboveground fresh and dry weights and relative chlorophyll content. Therefore, the substrate with grass clipping: perlite: pine bark=2:1:1 was the best culture medium for growing B. cucullata in this study, and the grass clippings could replace peat moss as alternative substrate for growing B. cucullata in containers.
文摘We compared the capacity of composts made from three different sources of organic wastes (horse manure and bedding, mink farm wastes, municipal solid waste (MSW) and sewage sludge), and clarifier solids from a chemo-thermomechanical pulp mill, to enhance the growth of tomato seedlings grown in potting soil with little organic matter. Germination and seedling emergence of tomatoes, cress or radish were tested to assess phytotoxicity of the four amendments. Mink farm compost and horse manurecompost stimulated root and shoot growth of tomato seedlings, but MSW compost and pulp mill solids were strongly inhibitory. MSW compost and non-amended potting soil also inhibited seedling emergence and pulp mill solids produced stunting and deformities in radish and cress seedlings. Both toxic constituents and nutrient imbalances may be responsible for the growth-inhibiting effects of these amendments. Application of pulp mill solids to agricultural soil without composting may lead to deleterious effects on vegetable crops.
基金support by the centre of research excellence(Vaal University of Technology)grant no 2188-2892 to fund this project is gratefully acknowledged
文摘In this study, biodiesel was produced from waste vegetable oil using a heterogeneous base catalyst synthesized by impregnating potassium hydroxide(KOH) onto diatomite. Response surface methodology based on a central composite design was used to optimize four transesterification variables: temperature(30–120 °C), reaction time(2–6 h), methanol to oil mass ratio(10%–50%) and catalyst to oil mass ratio(2.1%–7.9%). A quadratic polynomial equation was obtained to correlate biodiesel yield to the transesterification variables. The diatomite–KOH catalyst was characterized using X-ray diffraction(XRD), Fourier transform infra-red spectroscopy(FTIR) and a scanning electron microscope(SEM) equipped with an energy dispersive X-ray detector(EDS). A maximum biodiesel yield of 90%(by mass) was obtained. The reaction conditions were as follows: methanol to oil mass ratio 30%, catalyst to oil mass ratio 5%, reaction time 4 h, and reaction temperature 75 °C. The XRD, FTIR and SEM(EDS) results confirm that the addition of KOH modifies the structure of diatomite. During impregnation and calcination of the diatomite catalyst the K2 O phase forms in the diatomite structural matrix and the active basicity of this compound facilitates the transesterification process. It is possible to recycle the diatomite–KOH catalyst up to three times. The crucial biodiesel properties from waste vegetable oil are within the American Standard Test Method specifications.
文摘In this study, pyrolusiteore (MnO2) was subjected to mechanical milling with a high-energy mill with carbonized tea plant wastes and the effect of grinding time on the crystal structure of the material was investigated. The ratio of Mn/Fe was 8/1, the ratio of C/(MnO2 + Fe3O4) was 2 and the ratio of ball to ore was 10/1. The samples were mechanically ground at 10, 15, 20, 30, 60, 90 and 120 hours. In the processes performed on the attritor, the rotation speed of the mill shaft was determined to be 350 rpm. The results were characterized by TG-DTA, SEM and XRD analyzes. As a result of the experimental studies, it was observed that the samples subjected to mechanical grinding for 120 hours were gradually reduced due to the increasing grinding time at all the diffraction peaks when the XRD peaks were compared with the grinding times. In the thermogravimetric analysis, the sample milled for 120 hours, 50% weight loss was observed at 470 ℃, weight loss of up to 56% was observed at progressive temperatures.
文摘Biomass plants often struggle to capture flow measurements reliably. High amounts of dry solids and fats complicate the measurement with an MID (Magnetic-Inductive) flowmeter and make it susceptible to faults. To overcome this impediment, the waste water treatment plant in Innsbruck, Austria, relies on electromagnetic pulsed AC (Alternating Current) flowmeters. Compared to pulsed DC (Direct Current) devices, AC devices are able to build up magnetic fields that are ten times stronger. Equipped with this capability, the Sitrans Transmag 2 is able to guarantee a constant and also high measuring accuracy, zero point stability and signal strength regardless of impurities in the medium or fluctuations in the magnetic field.
文摘Investigation was focussed to application of waste POX (partial oxidation), e.g., meal rape in form of suspension in high boiling hydrocarbons from crude oil distillation. There is an opportunity for utilization of biomass waste resulted from fuels bio-components production. A decrease of oxygen and water steam demand in feed for POX process was observed in this variant. Catalytic effect of iron nanoparticles or nickel nitrate as catalysts in improvement of the pilot plant biomass/oil partial oxidation was investigated as well. Presence of catalyst in the feed supports formation of carbon monoxide and suppression content of methane in the gas product. Experimental data were well compared with process simulation based on eauilibrium reactor model.