Mangrove endophytic fungus 1893 was isolated from Kandelia candel from an estuarine mangrove on the South China Sea Coast Two new lactones 1893A and 1893B, together with other known compounds, have been isolated from ...Mangrove endophytic fungus 1893 was isolated from Kandelia candel from an estuarine mangrove on the South China Sea Coast Two new lactones 1893A and 1893B, together with other known compounds, have been isolated from its fermentation broth. To classify the endophyte correctly for further industrial application, a combination of morphological and molecular techniques was used to approach its identity. The endophyte was compared with similar species having trichogynes or trichogyne-like hyphae which apparently fused with an- theridium-like hyphae, and perithecia initials developing from an ascogonial coil surrounded by enveloping hyphae in early developmental stages on pure culture. Further morphological characteristics on host and non-host were used for comparison with similar species when the endophyte was cultivated on leaves ofKandelia candel and Mangifera indica, respectively, which resulted in classifying the endophyte as a Phomopsis specics. The ITS sequence of rDNA was used to infer its phylogenetic relationships with Phomopsis species that resembled the strain in morphology or ecology. Finally, the endophyte was identified as Diaporthe phaseolorum var. sojae based on morphological and molecular evidence. Our study is a first report ofDiaporthephaseolorum var. sojae isolated from mangrove Kandelia candel.展开更多
Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized p...Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized patterns that emerge from the interactions of individual modules. Interactions include both competition and cooperation,and several types of positive and negative feedback loops are involved. Development can be open to external influences, thus enabling the plant to adjust its form to the environment,for example, to the spatial distribution of ecological resources. This paper provides a review on adaptive plasticity in plants.展开更多
基金supported partly by the Guangzhou Natural Science Foundation (Grant No.2007Z3-EO581)the Guangdong Provincial Natural Science Foundation (Grant No.2007A0200300001-7)+1 种基金the Chinese High-Tech 863 Project (Grant No.2006AA09Z422)the National Natural Science Foundation of China(Grant No. 20572136).
文摘Mangrove endophytic fungus 1893 was isolated from Kandelia candel from an estuarine mangrove on the South China Sea Coast Two new lactones 1893A and 1893B, together with other known compounds, have been isolated from its fermentation broth. To classify the endophyte correctly for further industrial application, a combination of morphological and molecular techniques was used to approach its identity. The endophyte was compared with similar species having trichogynes or trichogyne-like hyphae which apparently fused with an- theridium-like hyphae, and perithecia initials developing from an ascogonial coil surrounded by enveloping hyphae in early developmental stages on pure culture. Further morphological characteristics on host and non-host were used for comparison with similar species when the endophyte was cultivated on leaves ofKandelia candel and Mangifera indica, respectively, which resulted in classifying the endophyte as a Phomopsis specics. The ITS sequence of rDNA was used to infer its phylogenetic relationships with Phomopsis species that resembled the strain in morphology or ecology. Finally, the endophyte was identified as Diaporthe phaseolorum var. sojae based on morphological and molecular evidence. Our study is a first report ofDiaporthephaseolorum var. sojae isolated from mangrove Kandelia candel.
基金This research was subsidized by the Hungarian National Research Fund(OTKA T35009,and NWOOTKA N34028),the Hungarian Ministry of Education(FKFP 0187/1990,Istvn Szchenyi Scolarship),and the International Program of the Santa Fe Institute,NM,USA.
文摘Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized patterns that emerge from the interactions of individual modules. Interactions include both competition and cooperation,and several types of positive and negative feedback loops are involved. Development can be open to external influences, thus enabling the plant to adjust its form to the environment,for example, to the spatial distribution of ecological resources. This paper provides a review on adaptive plasticity in plants.