The experiment was performed to evaluate the progenies of plant lines transgenic for auxin synthesis genes derived from Ri T-DNA. Four lines of the transgenic plants were selfcrossed and the foreign auxin genes in pla...The experiment was performed to evaluate the progenies of plant lines transgenic for auxin synthesis genes derived from Ri T-DNA. Four lines of the transgenic plants were selfcrossed and the foreign auxin genes in plants of T5 generation were confirmed by Southern hybridization. Two lines, D1232 and D1653, showed earlier folding of expanding leaves than untransformed line and therefore had early initiation of leaf y head. Leaf cuttings derived from plant of transgenic line D1653 produced more adventitious roots than the control whereas the cuttings from folding leaves had much more roots than rosette leaves at folding stage, and the cuttings from head leaves had more roots than rosette leaves at heading stage. It is demonstrated that early folding of transgenic leaf may be caused by the relatively higher concentration of auxin. These plant lines with auxin transgenes can be used for the study of hormonal regulation in differentiation and development of plant organs nd for the breeding of new varietywith rapid growth trait.展开更多
As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three all...As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects.展开更多
Phytohormone abscisic acid (ABA) was critical for many plant growth and developmental processesincluding seed maturation, germination and response to environmental factors. With the purpose to detectthe possible ABA r...Phytohormone abscisic acid (ABA) was critical for many plant growth and developmental processesincluding seed maturation, germination and response to environmental factors. With the purpose to detectthe possible ABA related signal transduction pathways, we tried to isolate ABA-regulated genes throughcDNA macroarray technology using ABA-treated rice seedling as materials (under treatment for 2, 4, 8 and12 h). Of 6144 cDNA clones tested, 37 differential clones showing induction or suppression for at least onetime, were isolated. Of them 30 and 7 were up- or down-regulated respectively. Sequence analyses revealedthat the putative encoded proteins were involved in different possible processes, including transcription,metabolism and resistance, photosynthesis, signal transduction, and seed maturation. 6 cDNA clones werefound to encode proteins with unknown functions. Regulation by ABA of 7 selected clones relating to signaltransduction or metabolism was confirmed by reverse transcription PCR. In addition, some clones werefurther shown to be regulated by other plant growth regulators including auxin and brassinosteroid, which,however, indicated the complicated interactions of plant hormones. Possible signal transduction pathwaysinvolved in ABA were discussed.展开更多
The hormone gibberellin(GA) plays an important role in modulating diverse processes throughout plant development.Gibberellin(GA) perception is mediated by GID1(GA-INSENSITIVE DWARF1),a receptor that shows similarity t...The hormone gibberellin(GA) plays an important role in modulating diverse processes throughout plant development.Gibberellin(GA) perception is mediated by GID1(GA-INSENSITIVE DWARF1),a receptor that shows similarity to hormone-sensitive lipases.It has been postulated that plants have two types of GA receptors,including soluble and membrane-bound forms.In recent years,significant advances have been made in the research of Gibberellin Receptor(GID1).This article highlights recent advances in the molecular structure of Gibberellin Receptor(GID1),Molecular Interactions between the Gibberellin Receptor(GID1) with DELLA,Cloning and expression of GA receptors(GID1),function identification of GA receptor gene(GID1).These discoveries open new prospects for the understanding mechanism of GA receptors(GID1) in plants.展开更多
An efficient protocol was developed for direct plant regeneration, multiplication and rooting of Balsam pear in vitro. The key factors influencing regeneration such as genotypes, explants type, seedling age, plant hor...An efficient protocol was developed for direct plant regeneration, multiplication and rooting of Balsam pear in vitro. The key factors influencing regeneration such as genotypes, explants type, seedling age, plant hormones and additives were summarized. The paper also discussed the problems existing on balsam pear tissue culture and prospected the future development of this system.展开更多
Tocopherols synthesized exclusively by photosynthetic organisms are major antioxidants in biomembranes.In plants,tocopherol cyclase(TC/VTE1) catalyzes the conversion of 2,3-dimethyl-5-phytyl-1,4-benzoquinone(DMPBQ) to...Tocopherols synthesized exclusively by photosynthetic organisms are major antioxidants in biomembranes.In plants,tocopherol cyclase(TC/VTE1) catalyzes the conversion of 2,3-dimethyl-5-phytyl-1,4-benzoquinone(DMPBQ) to γ-tocopherol.In the present study,OsVTE1,which encodes a rice tocopherol cyclase ortholog,was cloned and characterized.OsVTE1 was induced significantly by abiotic stresses such as high salt,H2O2,drought,cold and by the plant hormones ABA and salicylic acid.The tissue-specific expression pattern and OsVTE1-promoter GUS activity assay showed that OsVTE1 was mainly expressed in the leaf,and also could be detected in the root,stem and panicle.Compared with control plants,transgenic plants with OsVTE1 RNA interference(OsVTE1-RNAi) were more sensitive to salt stress whereas,in contrast,transgenic plants overexpressing OsVTE1(OsVTE1-OX) showed higher tolerance to salt stress.The DAB in vivo staining showed that OsVTE1-OX plants accumulated less H2O2 than did control plants.展开更多
文摘The experiment was performed to evaluate the progenies of plant lines transgenic for auxin synthesis genes derived from Ri T-DNA. Four lines of the transgenic plants were selfcrossed and the foreign auxin genes in plants of T5 generation were confirmed by Southern hybridization. Two lines, D1232 and D1653, showed earlier folding of expanding leaves than untransformed line and therefore had early initiation of leaf y head. Leaf cuttings derived from plant of transgenic line D1653 produced more adventitious roots than the control whereas the cuttings from folding leaves had much more roots than rosette leaves at folding stage, and the cuttings from head leaves had more roots than rosette leaves at heading stage. It is demonstrated that early folding of transgenic leaf may be caused by the relatively higher concentration of auxin. These plant lines with auxin transgenes can be used for the study of hormonal regulation in differentiation and development of plant organs nd for the breeding of new varietywith rapid growth trait.
文摘As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects.
基金Researches were supported by "the State Key Project of Basic Research, G1999011604" "Key Project of Knowledge Innovation, CAS", "the National Natural Science Foundation of China, No.30070073" "National Sciences Foundation of Pan-Deng". We thank Prof.
文摘Phytohormone abscisic acid (ABA) was critical for many plant growth and developmental processesincluding seed maturation, germination and response to environmental factors. With the purpose to detectthe possible ABA related signal transduction pathways, we tried to isolate ABA-regulated genes throughcDNA macroarray technology using ABA-treated rice seedling as materials (under treatment for 2, 4, 8 and12 h). Of 6144 cDNA clones tested, 37 differential clones showing induction or suppression for at least onetime, were isolated. Of them 30 and 7 were up- or down-regulated respectively. Sequence analyses revealedthat the putative encoded proteins were involved in different possible processes, including transcription,metabolism and resistance, photosynthesis, signal transduction, and seed maturation. 6 cDNA clones werefound to encode proteins with unknown functions. Regulation by ABA of 7 selected clones relating to signaltransduction or metabolism was confirmed by reverse transcription PCR. In addition, some clones werefurther shown to be regulated by other plant growth regulators including auxin and brassinosteroid, which,however, indicated the complicated interactions of plant hormones. Possible signal transduction pathwaysinvolved in ABA were discussed.
基金Supported by Natural Science Foundation of China(31360312)Guangxi Natural Science Foundation(2015GXNSFDA39011)+6 种基金National High Technology Research and Development Program("863"Program)of China(2013AA102604)National Key Technology R&D Program(2012BAD40B04-3)Guangxi Natural Science Foundation(2014GXNSFBA118087)International Scientific Cooperation Program of China(2013DFA31600)Guangxi Special Fund for Bagui Scholars(2013)Guangxi Academy of Agricultural Sciences project(2014YP03,2014YD02,2015YM13,2015YT03)Guangxi Academy of Agricultural Sciences Project(2014YP03,2014YD02,2015YM13,2015YT03)
文摘The hormone gibberellin(GA) plays an important role in modulating diverse processes throughout plant development.Gibberellin(GA) perception is mediated by GID1(GA-INSENSITIVE DWARF1),a receptor that shows similarity to hormone-sensitive lipases.It has been postulated that plants have two types of GA receptors,including soluble and membrane-bound forms.In recent years,significant advances have been made in the research of Gibberellin Receptor(GID1).This article highlights recent advances in the molecular structure of Gibberellin Receptor(GID1),Molecular Interactions between the Gibberellin Receptor(GID1) with DELLA,Cloning and expression of GA receptors(GID1),function identification of GA receptor gene(GID1).These discoveries open new prospects for the understanding mechanism of GA receptors(GID1) in plants.
文摘An efficient protocol was developed for direct plant regeneration, multiplication and rooting of Balsam pear in vitro. The key factors influencing regeneration such as genotypes, explants type, seedling age, plant hormones and additives were summarized. The paper also discussed the problems existing on balsam pear tissue culture and prospected the future development of this system.
基金supported by the National Basic Research Program of China (Grant No. 2006CB100102)National High-Tech Project (Grant No. 2006AA10Z18201)
文摘Tocopherols synthesized exclusively by photosynthetic organisms are major antioxidants in biomembranes.In plants,tocopherol cyclase(TC/VTE1) catalyzes the conversion of 2,3-dimethyl-5-phytyl-1,4-benzoquinone(DMPBQ) to γ-tocopherol.In the present study,OsVTE1,which encodes a rice tocopherol cyclase ortholog,was cloned and characterized.OsVTE1 was induced significantly by abiotic stresses such as high salt,H2O2,drought,cold and by the plant hormones ABA and salicylic acid.The tissue-specific expression pattern and OsVTE1-promoter GUS activity assay showed that OsVTE1 was mainly expressed in the leaf,and also could be detected in the root,stem and panicle.Compared with control plants,transgenic plants with OsVTE1 RNA interference(OsVTE1-RNAi) were more sensitive to salt stress whereas,in contrast,transgenic plants overexpressing OsVTE1(OsVTE1-OX) showed higher tolerance to salt stress.The DAB in vivo staining showed that OsVTE1-OX plants accumulated less H2O2 than did control plants.