Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe ...Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe yield reduction of many important crops. There are only very few herbicides which are able to selectively control broomrapes and different approaches have been put forward to develop natural product based pesticides to control Orobanche. Several phytopathogenic fungi were evaluated for their use as potential mycoherbicide and for ability to produce toxic metabolites which could be applied as herbicides. Using the alternative approach "suicidal germination", interesting results were obtained by testing two microbial metabolites (fusicoccins and ophiobolin A) especially with Orobanche species whose germination is not induced by the synthetic strigolactone GR24. From pea root exudates, peagol and peagoldione, close related to strigolactones, and three polyphenols, named peapolyphenols A-C, together with already well known polyphenol and a chalcone, were isolated. They showed a selective stimulation of Orobanche seed germination with the last two and peapolyphenol A showing a specific stimulatory activity on O. foetida. This review describes the most recent results achieved on Orobanche bio-control, mainly focusing on those regarding O. ramosa, O. crenata and O. foetida.展开更多
Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimen...Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimental soilborne microorganisms. The growth of biological control agents Trichoderma atroviride strain P1, Trichoderma harzianum strain A6 and strain T22, plant pathogens Botrytis cinerea, Alternaria alternata, Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum was investigated in the presence of REEs. An in vitro assays was used to monitor the effect of different concentration levels of either a mix of REEs (La, Ce, Pr, Nd) nitrates or lanthanum alone in comparison to treatments conducted with potassium nitrate and water. Although all fungi were affected when the REEs mix or lanthanum were present at concentrations higher than 100 mM, the growth inhibition depended mainly upon the combination of compounds, the dose and the fungal species or strains tested. Trichoderma strains and B. cinerea were more sensitive than A. alternata, F. solani, R. solani or at higher concentrations. Differing growth responses of some fungi to treatments with REEs mix vs. lanthanum alone indicated that in given situations the effect of the REEs compounds may be caused by elements other than lanthanum or by element mixtures. Further investigations are in progress to determine the effect of REEs on important interactions in the soil community between beneficial fungi, pathogenic fungi and/or the plant. REEs are naturally present in the environment and in biological systems but accumulation in soil can take place following successive applications. Therefore, it would be useful to achieve a better understanding of the effect of REEs accumulation on the activity of rhizosphere microorganisms given the widespread use in some regions of rare earths as fertilizers and their presence as fertilizer contaminants.展开更多
The incidence of the airborne fungal spores was determined in the air of subalpine zone of the Karkonosze Mountains and of the Izerskie Mountains in the borderland between Poland and the Czech Republic. The experiment...The incidence of the airborne fungal spores was determined in the air of subalpine zone of the Karkonosze Mountains and of the Izerskie Mountains in the borderland between Poland and the Czech Republic. The experiment was conducted in2011 and 2012 at three to four week intervals from May to October. Air samples were taken from three locations in the Karkonosze Mts. and one from the Izerskie Mts. To examine the air, the Air Ideal 3P sampler and acidified PDA medium were used. The results show that Cladosporium cladosporioides was the most abundant spore type in all the sampling locations(up to 30%), followed by Alternaria alternata(16%–20%), Fusarium(up to 10%) and Sclerotinia sclerotiorium(up to 6%). The lower spore counts were recorded in May samples, compared to the other months. In this case the snow cover, that was still present in the area at the beginning of May,may be the reason for the lower, compared to June,July and August samplings, CFU(Colony Forming Unit) counts in that month.. The influx of air masses from SE, S and SW sectors in the area under study may affect dissemination of the plant-pathogenic fungi from the Czech Republic and from the South of Europe in general.展开更多
The molecular factors involved in the three-way interaction between plant, pathogenic fungi and antagonistic/biocontrol fungi, such as Trichoderma, are still poorly understood, even if they represent a matter of inter...The molecular factors involved in the three-way interaction between plant, pathogenic fungi and antagonistic/biocontrol fungi, such as Trichoderma, are still poorly understood, even if they represent a matter of interest for improving crop management and developing new strategies for plant diseases control. The aim of this work is to investigate the components involved in this interaction and, for this purpose, a proteomic approach was used. 2-D maps of the protein extracts from the single components in various interactions between plants (potato, bean, tobacco or tomato), pathogens (Botrytis cinerea, Rhizoctonia solani or Pythium ultimum) and biocontrol fungi (Trichoderma atroviride strain P1 or Trichoderma harzianum strain T22) were obtained. The proteome of each partner was collected separately and extracted by acetone precipitation in presence of trichloroacetic acid and a reducing agent (DTT). The extracted proteins were separated by isoelectrofocusing (IEF), using IPG (Immobilized pH gradient) strips, followed by SDS-PAGE. In order to improve resolution the separations were performed both on wide than narrow pH range and on different gel lengths. Differential spots were noted in the proteome of the three-way interaction when compared to each single component. These were further characterized by mass spectrometry and in silico analysis with the aim of identifying and cloning the relative genes. During the in vitro interaction of T. harzianum strain T22 with tomato and the culture filtrate or cell walls of pathogens, the spot number was higher than in the presence of pathogen biomass. In terms of Trichoderma differential proteins displayed on 2D gels, the most important changes were obtained in the presence of P. ultimum . During the in vivo interaction with tomato, the antagonist proteome changed much more in presence of soilborne fungi R. solani and P. ultimum than with the foliar fungus B. cinerea, both in terms of total and increased or novel spots. In silico analysis of some of those spots revealed homology with intracellular enzymes (GTPases, hydrolases) and with stress-related proteins (heat shock proteins HSP70, bacteriocin cloacin). Specific proteins in the plant proteome, i.e. pathogenesis-related proteins, have been identified during the in vivo interaction of bean with R. solani and T. atroviride strain P1. This is in agreement with the demonstrated ability of these beneficial fungi to induce plant systemic disease resistance by activating expression of defence-related genes. Proteins extracted from T. atrovride strain P1 which were analysed by mass spectrometry, revealed some interesting homologies with a fungal hydrophobin of Pleurotus ostreatus and an ABC transporter of Ralstonia metallidurans. These could represent molecular factors involved in the antagonistic mechanisms of Trichoderma and play a role in the three-way interaction with the plant and other microbes.展开更多
Sesamum, an important oil yielding crop suffers a huge loss in its yield due to attack of large number of fungal pathogens. In semi-arid regions Sesamum is mainly affected by two major plant-pathogenic fungus viz. Mac...Sesamum, an important oil yielding crop suffers a huge loss in its yield due to attack of large number of fungal pathogens. In semi-arid regions Sesamum is mainly affected by two major plant-pathogenic fungus viz. Macrophomina phaseolina and Fusarium oxysporum. The aim of the study was to analyze the metabolic alterations in Sesamum after infection with both pathogens. This accomplished by individually by (the word estimating is not quantitative) the levels of total phenolic compounds and the activities of phenylalanine ammonia lyase (PAL) of one week old plants. The PAL showed high activity in infected plants, revealing the active phase in the synthesis of secondary metabolites in the Sesamum plant after infection. As a consequence, in infected plants the contents of polyphenols along with salicylic acid (SA) considerably exceeded when compared to control plants. This in vivo study of M. phaseolina and F. oxysporum infection reveals the differences of resistance levels in sesame against these two pathogens. These results provide important information regarding the plant-pathogen interactions and also forfor Sesamum improvement programs seeking the adaptation to diverse range of fungal attack along with adverse environmental factors.展开更多
The sugar beet root rot and Bayoud disease, respectively caused by Sclerotium rolfsii and Fusarium oxysporum albedinis, are major agricultural problems in Morocco, affecting its economical and social conditions. As of...The sugar beet root rot and Bayoud disease, respectively caused by Sclerotium rolfsii and Fusarium oxysporum albedinis, are major agricultural problems in Morocco, affecting its economical and social conditions. As of now, no effective control method of these phytopathogens is available. Therefore the search for new efficient and ecologically undamaging fungicides was essential. The present study reports the antifungal activity of five organic extracts of Corrigiola telephiifolia Pourr., a Moroccan medicinal plant, against these fungi using mycelial growth inhibition assays (in vitro). The extracts concentration varied from 0.01 to 1 mg.mlt. Also, preliminary information on the chemical composition of the extracts is included. The results showed a difference in sensitivity of both fungi toward the plant extracts. The mycelia growth of Sclerotium rolfsii was concentration and time-dependant. It was markedly inhibited by the polar extracts especially at high dose (p〈 0.001). While Fusarium oxysporum f. sp. albedinis was much less sensitive.展开更多
The study aimed at comparing the effect of selected biopreparations (Boni protect forte, beta-chikol, Trianum P) and fungicide treatment Switch 62.5 WG (cyprodinil + fludioxonil) on the health status of strawberr...The study aimed at comparing the effect of selected biopreparations (Boni protect forte, beta-chikol, Trianum P) and fungicide treatment Switch 62.5 WG (cyprodinil + fludioxonil) on the health status of strawberry grown in the fruiting field at the strawberry farm in Jasionka, Lublin region. The experiment was conducted for three years (2012-2014). Results showed that the application of all biopreparations and fungicide significantly reduced the number of diseased plants and the disease index. The effect of three biological products was similar. The mycological analysis of plants showed that among the fungi potentially pathogenic to strawberry, Fusarium spp., Cylindrocarpon spp., Botrytis cinerea and Alternaria were predominated. The fewest colonies of pathogenic fungi were isolated from plants treated with Trianum P.展开更多
Sixteen polymorphic microsatellite markers suitable for population genetic structure analysis and signal transduction coding genes variation measurement were developed for rice blast fungus, Magnaporthe grisea. Polymo...Sixteen polymorphic microsatellite markers suitable for population genetic structure analysis and signal transduction coding genes variation measurement were developed for rice blast fungus, Magnaporthe grisea. Polymorphism was evaluated by using forty-six isolates collected from diverse geographical locations (including japonica grown zone, indica grown zone) and rice varieties. Preliminary results indicated that each locus resolved multiple alleles ranging from three to fourteen. The results showed that these SSR-containing genes are also polymorphic in the nature population.展开更多
Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhP...Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin btmdling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence important for defense against V. dahliae infection. showing that actin cytoskeleton reorganization involving GhPFN2 is展开更多
Aims Plant–soil feedback(PSF)is a key mechanism that can facilitate tree species coexistence and diversity.Substantial evidence suggests that species-specific soil-borne pathogens around adult trees limit the perform...Aims Plant–soil feedback(PSF)is a key mechanism that can facilitate tree species coexistence and diversity.Substantial evidence suggests that species-specific soil-borne pathogens around adult trees limit the performance of home(conspecific)seedlings relative to foreign(heterospecific)seedlings.However,the underlying mechanism remains largely elusive.Methods Here,we conducted a reciprocal transplant pot experiment using seedlings and from two tree species,Pinus massoniana and Lithocarpus glaber that are dominant and coexist in a subtropical,evergreen,broad-leaf forest in Gutianshan,Zhejiang Province of eastern China.We examined how seedlings from the two tree species responded to soils originating from underneath their own versus the other tree species,using a full-factorial design.Additionally,we added a fungicide(benomyl)to half of the pots to evaluate the role of soil-borne fungi on seedling growth.Important Findings We found that the seedlings from L.glaber grew better in soils that were collected from beneath the canopy of P.massoniana,while seedling growth of P.massioniana was not affected by soil origin.The addition of fungicide benomyl resulted in a shift towards more positive PSF effects for L.glaber,indicating that L.glaber seedlings performed better in their own soils than in soils from P.massoniana in the absence of fungi.Our findings highlight the importance of soil-borne pathogenic and ectomycorrhizal fungi in driving PSF,and indicate that PSF may promote the coexistence of two subtropical tree species by reducing the performance of L.glaber in own soils.展开更多
Toxin, one of the most important factors of plant fungal disease, has attracted much attention of many academicians who have been studying pathogen mycotoxin in deep research. The paper summarized chemical structures ...Toxin, one of the most important factors of plant fungal disease, has attracted much attention of many academicians who have been studying pathogen mycotoxin in deep research. The paper summarized chemical structures of some host-selective plant pathogen mycotoxins discovered in recent years and the correlation between biological activity and chemical structure of toxin.展开更多
文摘Orobanche spp. (broomrapes) are holoparasitic plants distributed predominantly in the Northern Hemisphere parasitizing the roots of a range of plant species mainly in wild ecosystems. Orobanche species cause severe yield reduction of many important crops. There are only very few herbicides which are able to selectively control broomrapes and different approaches have been put forward to develop natural product based pesticides to control Orobanche. Several phytopathogenic fungi were evaluated for their use as potential mycoherbicide and for ability to produce toxic metabolites which could be applied as herbicides. Using the alternative approach "suicidal germination", interesting results were obtained by testing two microbial metabolites (fusicoccins and ophiobolin A) especially with Orobanche species whose germination is not induced by the synthetic strigolactone GR24. From pea root exudates, peagol and peagoldione, close related to strigolactones, and three polyphenols, named peapolyphenols A-C, together with already well known polyphenol and a chalcone, were isolated. They showed a selective stimulation of Orobanche seed germination with the last two and peapolyphenol A showing a specific stimulatory activity on O. foetida. This review describes the most recent results achieved on Orobanche bio-control, mainly focusing on those regarding O. ramosa, O. crenata and O. foetida.
文摘Rare earth elements (REEs) enriched fertilisers are currently used in China for soil and foliar applications to crops, but little is known about the effect of REEs applications on the growth of beneficial and detrimental soilborne microorganisms. The growth of biological control agents Trichoderma atroviride strain P1, Trichoderma harzianum strain A6 and strain T22, plant pathogens Botrytis cinerea, Alternaria alternata, Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum was investigated in the presence of REEs. An in vitro assays was used to monitor the effect of different concentration levels of either a mix of REEs (La, Ce, Pr, Nd) nitrates or lanthanum alone in comparison to treatments conducted with potassium nitrate and water. Although all fungi were affected when the REEs mix or lanthanum were present at concentrations higher than 100 mM, the growth inhibition depended mainly upon the combination of compounds, the dose and the fungal species or strains tested. Trichoderma strains and B. cinerea were more sensitive than A. alternata, F. solani, R. solani or at higher concentrations. Differing growth responses of some fungi to treatments with REEs mix vs. lanthanum alone indicated that in given situations the effect of the REEs compounds may be caused by elements other than lanthanum or by element mixtures. Further investigations are in progress to determine the effect of REEs on important interactions in the soil community between beneficial fungi, pathogenic fungi and/or the plant. REEs are naturally present in the environment and in biological systems but accumulation in soil can take place following successive applications. Therefore, it would be useful to achieve a better understanding of the effect of REEs accumulation on the activity of rhizosphere microorganisms given the widespread use in some regions of rare earths as fertilizers and their presence as fertilizer contaminants.
基金owe a debt of gratitude to the Department of Plant Protection, Wroclaw University of Environmental and Life Sciences for financing the project
文摘The incidence of the airborne fungal spores was determined in the air of subalpine zone of the Karkonosze Mountains and of the Izerskie Mountains in the borderland between Poland and the Czech Republic. The experiment was conducted in2011 and 2012 at three to four week intervals from May to October. Air samples were taken from three locations in the Karkonosze Mts. and one from the Izerskie Mts. To examine the air, the Air Ideal 3P sampler and acidified PDA medium were used. The results show that Cladosporium cladosporioides was the most abundant spore type in all the sampling locations(up to 30%), followed by Alternaria alternata(16%–20%), Fusarium(up to 10%) and Sclerotinia sclerotiorium(up to 6%). The lower spore counts were recorded in May samples, compared to the other months. In this case the snow cover, that was still present in the area at the beginning of May,may be the reason for the lower, compared to June,July and August samplings, CFU(Colony Forming Unit) counts in that month.. The influx of air masses from SE, S and SW sectors in the area under study may affect dissemination of the plant-pathogenic fungi from the Czech Republic and from the South of Europe in general.
文摘The molecular factors involved in the three-way interaction between plant, pathogenic fungi and antagonistic/biocontrol fungi, such as Trichoderma, are still poorly understood, even if they represent a matter of interest for improving crop management and developing new strategies for plant diseases control. The aim of this work is to investigate the components involved in this interaction and, for this purpose, a proteomic approach was used. 2-D maps of the protein extracts from the single components in various interactions between plants (potato, bean, tobacco or tomato), pathogens (Botrytis cinerea, Rhizoctonia solani or Pythium ultimum) and biocontrol fungi (Trichoderma atroviride strain P1 or Trichoderma harzianum strain T22) were obtained. The proteome of each partner was collected separately and extracted by acetone precipitation in presence of trichloroacetic acid and a reducing agent (DTT). The extracted proteins were separated by isoelectrofocusing (IEF), using IPG (Immobilized pH gradient) strips, followed by SDS-PAGE. In order to improve resolution the separations were performed both on wide than narrow pH range and on different gel lengths. Differential spots were noted in the proteome of the three-way interaction when compared to each single component. These were further characterized by mass spectrometry and in silico analysis with the aim of identifying and cloning the relative genes. During the in vitro interaction of T. harzianum strain T22 with tomato and the culture filtrate or cell walls of pathogens, the spot number was higher than in the presence of pathogen biomass. In terms of Trichoderma differential proteins displayed on 2D gels, the most important changes were obtained in the presence of P. ultimum . During the in vivo interaction with tomato, the antagonist proteome changed much more in presence of soilborne fungi R. solani and P. ultimum than with the foliar fungus B. cinerea, both in terms of total and increased or novel spots. In silico analysis of some of those spots revealed homology with intracellular enzymes (GTPases, hydrolases) and with stress-related proteins (heat shock proteins HSP70, bacteriocin cloacin). Specific proteins in the plant proteome, i.e. pathogenesis-related proteins, have been identified during the in vivo interaction of bean with R. solani and T. atroviride strain P1. This is in agreement with the demonstrated ability of these beneficial fungi to induce plant systemic disease resistance by activating expression of defence-related genes. Proteins extracted from T. atrovride strain P1 which were analysed by mass spectrometry, revealed some interesting homologies with a fungal hydrophobin of Pleurotus ostreatus and an ABC transporter of Ralstonia metallidurans. These could represent molecular factors involved in the antagonistic mechanisms of Trichoderma and play a role in the three-way interaction with the plant and other microbes.
文摘Sesamum, an important oil yielding crop suffers a huge loss in its yield due to attack of large number of fungal pathogens. In semi-arid regions Sesamum is mainly affected by two major plant-pathogenic fungus viz. Macrophomina phaseolina and Fusarium oxysporum. The aim of the study was to analyze the metabolic alterations in Sesamum after infection with both pathogens. This accomplished by individually by (the word estimating is not quantitative) the levels of total phenolic compounds and the activities of phenylalanine ammonia lyase (PAL) of one week old plants. The PAL showed high activity in infected plants, revealing the active phase in the synthesis of secondary metabolites in the Sesamum plant after infection. As a consequence, in infected plants the contents of polyphenols along with salicylic acid (SA) considerably exceeded when compared to control plants. This in vivo study of M. phaseolina and F. oxysporum infection reveals the differences of resistance levels in sesame against these two pathogens. These results provide important information regarding the plant-pathogen interactions and also forfor Sesamum improvement programs seeking the adaptation to diverse range of fungal attack along with adverse environmental factors.
文摘The sugar beet root rot and Bayoud disease, respectively caused by Sclerotium rolfsii and Fusarium oxysporum albedinis, are major agricultural problems in Morocco, affecting its economical and social conditions. As of now, no effective control method of these phytopathogens is available. Therefore the search for new efficient and ecologically undamaging fungicides was essential. The present study reports the antifungal activity of five organic extracts of Corrigiola telephiifolia Pourr., a Moroccan medicinal plant, against these fungi using mycelial growth inhibition assays (in vitro). The extracts concentration varied from 0.01 to 1 mg.mlt. Also, preliminary information on the chemical composition of the extracts is included. The results showed a difference in sensitivity of both fungi toward the plant extracts. The mycelia growth of Sclerotium rolfsii was concentration and time-dependant. It was markedly inhibited by the polar extracts especially at high dose (p〈 0.001). While Fusarium oxysporum f. sp. albedinis was much less sensitive.
文摘The study aimed at comparing the effect of selected biopreparations (Boni protect forte, beta-chikol, Trianum P) and fungicide treatment Switch 62.5 WG (cyprodinil + fludioxonil) on the health status of strawberry grown in the fruiting field at the strawberry farm in Jasionka, Lublin region. The experiment was conducted for three years (2012-2014). Results showed that the application of all biopreparations and fungicide significantly reduced the number of diseased plants and the disease index. The effect of three biological products was similar. The mycological analysis of plants showed that among the fungi potentially pathogenic to strawberry, Fusarium spp., Cylindrocarpon spp., Botrytis cinerea and Alternaria were predominated. The fewest colonies of pathogenic fungi were isolated from plants treated with Trianum P.
文摘Sixteen polymorphic microsatellite markers suitable for population genetic structure analysis and signal transduction coding genes variation measurement were developed for rice blast fungus, Magnaporthe grisea. Polymorphism was evaluated by using forty-six isolates collected from diverse geographical locations (including japonica grown zone, indica grown zone) and rice varieties. Preliminary results indicated that each locus resolved multiple alleles ranging from three to fourteen. The results showed that these SSR-containing genes are also polymorphic in the nature population.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11040600)the National Natural Science Foundation of China(31671278)the State Key Laboratory of Plant Genomics of China(2015B0129-02)
文摘Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin btmdling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence important for defense against V. dahliae infection. showing that actin cytoskeleton reorganization involving GhPFN2 is
基金This research was supported by the National Natural Science Foundation of China(32071644,31670535 and 31270559)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB31030000)the National Key Research and Development Project of China(2017YFA0605103).
文摘Aims Plant–soil feedback(PSF)is a key mechanism that can facilitate tree species coexistence and diversity.Substantial evidence suggests that species-specific soil-borne pathogens around adult trees limit the performance of home(conspecific)seedlings relative to foreign(heterospecific)seedlings.However,the underlying mechanism remains largely elusive.Methods Here,we conducted a reciprocal transplant pot experiment using seedlings and from two tree species,Pinus massoniana and Lithocarpus glaber that are dominant and coexist in a subtropical,evergreen,broad-leaf forest in Gutianshan,Zhejiang Province of eastern China.We examined how seedlings from the two tree species responded to soils originating from underneath their own versus the other tree species,using a full-factorial design.Additionally,we added a fungicide(benomyl)to half of the pots to evaluate the role of soil-borne fungi on seedling growth.Important Findings We found that the seedlings from L.glaber grew better in soils that were collected from beneath the canopy of P.massoniana,while seedling growth of P.massioniana was not affected by soil origin.The addition of fungicide benomyl resulted in a shift towards more positive PSF effects for L.glaber,indicating that L.glaber seedlings performed better in their own soils than in soils from P.massoniana in the absence of fungi.Our findings highlight the importance of soil-borne pathogenic and ectomycorrhizal fungi in driving PSF,and indicate that PSF may promote the coexistence of two subtropical tree species by reducing the performance of L.glaber in own soils.
基金Supported by the National Science Foundation Program (30271084).
文摘Toxin, one of the most important factors of plant fungal disease, has attracted much attention of many academicians who have been studying pathogen mycotoxin in deep research. The paper summarized chemical structures of some host-selective plant pathogen mycotoxins discovered in recent years and the correlation between biological activity and chemical structure of toxin.