A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that a...A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectivelyl from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission.展开更多
The study, conducted in the Canton Erd6-Pala Chad, aims to i) list the different cultural practices, ii) study their impact on the vegetation and iii) determine the methods of co-management of these cultural practi...The study, conducted in the Canton Erd6-Pala Chad, aims to i) list the different cultural practices, ii) study their impact on the vegetation and iii) determine the methods of co-management of these cultural practices. The surveys were realized on 50 households in the village and phytosociological plants in corn, millet, cotton and peanuts cultures. The data analysis by statgraphic and Excel and Principal Component Analysis (PCA) showed that maize production (1,200 kg/ha) ranked first at the expense of cotton (640 kg/ha). They negatively affect climate change (temperature increase (26%), rain drop (20%), land reclamation (18%) and flooding (12%)). Surveys of vegetation on three acres cotton fields (76.17%), millet (81.06%), corn (80.32%) and groundnut (83.56%) showed that there is no significant difference (P = 0.05) on the specific contribution of wood of different types of farming practices. Adventists species herbacious like Thelepogon elegans (27.84%), Hyptis spicigera (19.31%), Teramnus labialis (15.86%) have most important contributions in specific cultures. Methods of crop treatments have a destructive impact on the environment and the loss of biodiversity and the invasion of crops by adventists. Co-management, crop rotation, association of cultures, community forest management, agroforestry and training farmers in the use of inputs will reduce the potential risks of farming practices.展开更多
Decades of commercial planting and other anthropogenic processes are posing a threat to the riparian landscapes of the Cauvery river basin, which supports a high floral diversity. Despite this, the habitats in the ups...Decades of commercial planting and other anthropogenic processes are posing a threat to the riparian landscapes of the Cauvery river basin, which supports a high floral diversity. Despite this, the habitats in the upstream sections of the River Cauvery are still intact, as they are located in sacred groves. To understand the dynamism of riparian forests exposed to anthropogenic pressures, the upstream stretch of Cauvery extending from Kushalanagara to Talacauvery (~102 km) was categorized into two landscapes: agro ecosystem and sacred (i.e. preserved). The tree species were sampled using belt transects at 5 km intervals and the regeneration status of endemic species assessed using quadrats. A total of 128 species belonging to 47 families, and representing 1,590 individuals, was observed. Amongst them, 65% of unique species were exclusive to sacred landscapes. A rarefaction plot confirmed higher species richness for the sacred compared to the agro ecosystem landscapes, and diversity indices with more evenness in distribution were evident in sacred landscapes. A significant loss of endemic tree species in the agro ecosystem landscapes was found. Overall, this study demonstrates that an intense biotic pressure in terms of plantations and other anthropogenic activities have altered the species composition of the riparian zone in non-sacred areas. A permanent policy implication is required for the conservation of riparian buffers to avoid further ecosystem degradation and loss of biodiversity.展开更多
Paramo is a term used to describe tropical alpine vegetation between the continuous timberline and the snow line in tbe Northern Andes. Paramo environments provide important species habitat and ecosystem services. Cha...Paramo is a term used to describe tropical alpine vegetation between the continuous timberline and the snow line in tbe Northern Andes. Paramo environments provide important species habitat and ecosystem services. Changes in spatial extent of the paramo ecosystem at Pambamarca in the Central Cordillera of the northern Ecuadorian Andes were analysed using multi-temporal Landsat TM/ETM+ satellite data. The region suffered a loss of 1826.6 ha or 20% of the total area at a rate of 100 ha/annum during 1988-2007 period. It is found that permanent paramo cover decreased from 8350 ha in 1988 to 5864 ha in 2007 at a fairly constant rate (R^2=0.94). This loss is attributed to expansion of commercial agriculture and floriculture in the valleys coupled with increased population pressure. Land at higher elevations has been cleared for small scale agriculture. Loss of the paramo ecosystem will exert a number of negative impacts on ecosystem services and livelihoods of the local population at Pambamarca.展开更多
The Loess Plateau, which is located in the arid and semi-arid areas of China, experiences significant soil erosion due to intense human activities and soil erodibility. It is necessary to explore and identify the land...The Loess Plateau, which is located in the arid and semi-arid areas of China, experiences significant soil erosion due to intense human activities and soil erodibility. It is necessary to explore and identify the land-use types or land-use patterns that can control soil erosion and achieve certain agricultural production capabilities. This study established runoff plots with two slope gradients (5° and 15°) in north of Yan'an, one area of the Loess Plateau, with 3 single land-use types (cultivated land, CL; switchgrass, SG; and abandoned land, AL) and 2 composite land-use types (CL-SG and CL-AL). From 2006 to 2012, we continuously monitored the rainfall characteristics, runoff depth, soil loss, vegetation coverage, and soil physical properties. The results indicated a general trend in the number of runoff and soil loss events for the 5 land-use types: CL = CL-SG 〉 CL-AL 〉 SG〉 AL. The general trend for runoff depth, soil loss, their magnitudes of variation, and the slopes of rainfall-runoff regression equation was CL 〉 CL-SG 〉 CL-AL 〉 SG 〉 AL, whereas the rainfall threshold for runoff generation exhibited the opposite trend. Results of nonparametric test regarding runoff depth/EI3o and soil loss/EI3o, where EI3o is the product of rainfall kinetic energy and the maximum rainfall intensity over 30 min, and the runoff depth-soil loss relationship regression indicated that the effect of CL-AL was similar to that of SG; SG was similar to AL; and CL-AL, SG, and AL were superior to CL with regard to soil and water conservation. Runoff depth and soil loss significantly increased as the slope gradient increased. Runoff depth and soil loss were significantly correlated with the soil particle size composition and bulk density, respectively. The strongest significant correlations were found between runoff depth and vegetation coverage as well as between soil loss and vegetation coverage, which showed that vegetation coverage was the primary factor controlling soil erosion. Therefore, the composite land-use type CL-AL and the artificial grassland (SG) are appropriate options because both soil conservation and a certain degree of agricultural production are necessary in the study area.展开更多
The influence of monsoon climatic characteristics makes the tropics of China different from those of other parts of the world. Therefore, the location of the northern boundary of China's tropical zone has been one...The influence of monsoon climatic characteristics makes the tropics of China different from those of other parts of the world. Therefore, the location of the northern boundary of China's tropical zone has been one of the most controversial issues in the study of comprehensive physical regionalisation in China. This paper introduces developments in the study of the northern boundary of China's tropical zone, in which different scholars delimit the boundary with great differences based on different regionalisation objectives, indexes, and methods. The main divergence of opinion is found in different understandings of zonal vegetation, agricultural vegetation type, cropping systems, tropical soil type and tropical characteristics. In this study, we applied the Geo Detector model, which measures the spatial stratified heterogeneity, to validate the northern boundaries of the tropical zone delimited by six principal scholars. The results show that the mean q-statistic value of the higher latitude boundary delimited by Ren Mei'e is the largest(q=0.37), suggesting that, of the rival views, it best reflects the regional differences between China's tropical and subtropical zones, but it is not necessarily suitable for guiding the development of tropical agriculture. The mean values of the q-statistics of Zheng Du's line and Yu Xianfang's line around the Leizhou Peninsula at a lower latitude were smaller, at 0.10 and 0.08 respectively, indicating that the regional differences were smaller than those of Ren Mei'e's boundary. Against the background of global climate change, the climate itself is changing in fluctuation. It is, thus, worth our further research whether the northern boundary of the tropical zone should not be a fixed line but rather should fluctuate within a certain scope to reflect these changes.展开更多
Terrestrial vegetation is one of the most important components of the Earth's land surface. Variations in terrestrial vegetation directly impact the Earth system's balance of material and energy. This paper de...Terrestrial vegetation is one of the most important components of the Earth's land surface. Variations in terrestrial vegetation directly impact the Earth system's balance of material and energy. This paper describes detected variations in vegetation activity at a national scale for China based on nearly 30 years of remote sensing data derived from NOAA/AVHRR(1982–2006) and MODIS(2001–2009). Vegetation activity is analyzed for four regions covering agriculture, forests, grasslands, and China's Northwest region with sparse vegetation cover(including regions without vegetation). Relationships between variations in vegetation activity and climate change as well as agricultural production are also explored. The results show that vegetation activity has generally increased across large areas, especially during the most recent decade. The variations in vegetation activity have been driven primarily by human factors, especially in the southern forest region and the Northwest region with sparse vegetation cover. The results further show that the variations in vegetation activity have influenced agricultural production, but with a certain time lag.展开更多
In order to measure dust's nutrient input on farmland in different agro-ecological zones, Harmattan dust was sampled by mats with plastic straw in Ghana between 2002–2006. The inputs of total nutrients by Harmatt...In order to measure dust's nutrient input on farmland in different agro-ecological zones, Harmattan dust was sampled by mats with plastic straw in Ghana between 2002–2006. The inputs of total nutrients by Harmattan dust in Ghana per Harmattan period were about 1–2 kg Ca ha-1, 0.5–2 kg K ha-1, 0.5–1.5 kg Mg ha-1and less than 0.5 kg P ha-1. Compared with the annual input of nutrients by precipitation, the dust accounted for 10% or less of Ca, Mg and K but approximately 20%–40% of P. The input of nutrients by dust was only valid for areas with vegetation, because in areas with none or sparse vegetation, loss of soil due to wind erosion and hereby loss of nutrients might be significant. In farmland areas with bare and vegetated fields there seemed to be an internal redistribution of the nutrients and not a net gain of nutrients from outside the area(long-range transported dust). The input of P by dust might be of some importance in the traditional shifting cultivation systems, while the inputs of other three nutrients of Ca, Mg and K were so low that they must be considered insignificant. In the intensive agriculture systems with huge inputs of manures and fertilizers the nutrient input by dust is insignificant and could be neglected.展开更多
基金the National Natural Science Foundation of China (No. 39730110) and the Ministryof Foreign Affairs, Belgium (ABOS) through "VL
文摘A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectivelyl from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission.
文摘The study, conducted in the Canton Erd6-Pala Chad, aims to i) list the different cultural practices, ii) study their impact on the vegetation and iii) determine the methods of co-management of these cultural practices. The surveys were realized on 50 households in the village and phytosociological plants in corn, millet, cotton and peanuts cultures. The data analysis by statgraphic and Excel and Principal Component Analysis (PCA) showed that maize production (1,200 kg/ha) ranked first at the expense of cotton (640 kg/ha). They negatively affect climate change (temperature increase (26%), rain drop (20%), land reclamation (18%) and flooding (12%)). Surveys of vegetation on three acres cotton fields (76.17%), millet (81.06%), corn (80.32%) and groundnut (83.56%) showed that there is no significant difference (P = 0.05) on the specific contribution of wood of different types of farming practices. Adventists species herbacious like Thelepogon elegans (27.84%), Hyptis spicigera (19.31%), Teramnus labialis (15.86%) have most important contributions in specific cultures. Methods of crop treatments have a destructive impact on the environment and the loss of biodiversity and the invasion of crops by adventists. Co-management, crop rotation, association of cultures, community forest management, agroforestry and training farmers in the use of inputs will reduce the potential risks of farming practices.
文摘Decades of commercial planting and other anthropogenic processes are posing a threat to the riparian landscapes of the Cauvery river basin, which supports a high floral diversity. Despite this, the habitats in the upstream sections of the River Cauvery are still intact, as they are located in sacred groves. To understand the dynamism of riparian forests exposed to anthropogenic pressures, the upstream stretch of Cauvery extending from Kushalanagara to Talacauvery (~102 km) was categorized into two landscapes: agro ecosystem and sacred (i.e. preserved). The tree species were sampled using belt transects at 5 km intervals and the regeneration status of endemic species assessed using quadrats. A total of 128 species belonging to 47 families, and representing 1,590 individuals, was observed. Amongst them, 65% of unique species were exclusive to sacred landscapes. A rarefaction plot confirmed higher species richness for the sacred compared to the agro ecosystem landscapes, and diversity indices with more evenness in distribution were evident in sacred landscapes. A significant loss of endemic tree species in the agro ecosystem landscapes was found. Overall, this study demonstrates that an intense biotic pressure in terms of plantations and other anthropogenic activities have altered the species composition of the riparian zone in non-sacred areas. A permanent policy implication is required for the conservation of riparian buffers to avoid further ecosystem degradation and loss of biodiversity.
文摘Paramo is a term used to describe tropical alpine vegetation between the continuous timberline and the snow line in tbe Northern Andes. Paramo environments provide important species habitat and ecosystem services. Changes in spatial extent of the paramo ecosystem at Pambamarca in the Central Cordillera of the northern Ecuadorian Andes were analysed using multi-temporal Landsat TM/ETM+ satellite data. The region suffered a loss of 1826.6 ha or 20% of the total area at a rate of 100 ha/annum during 1988-2007 period. It is found that permanent paramo cover decreased from 8350 ha in 1988 to 5864 ha in 2007 at a fairly constant rate (R^2=0.94). This loss is attributed to expansion of commercial agriculture and floriculture in the valleys coupled with increased population pressure. Land at higher elevations has been cleared for small scale agriculture. Loss of the paramo ecosystem will exert a number of negative impacts on ecosystem services and livelihoods of the local population at Pambamarca.
基金This work was supported by the National Natu- ral Science Foundation of China (Nos. 41390462 and 41501201) and the foundation of the Ministry of Land and Resources, China (No. 2015-01-62). The authors wish to acknowledge the Ansai Research Station of Soil and Water Conservation, Chinese Academy of Sciences for their support and contributions to this fieldwork. Special gratitude is expressed to two anonymous re- viewers for their valuable suggestions in improving the manuscript.
文摘The Loess Plateau, which is located in the arid and semi-arid areas of China, experiences significant soil erosion due to intense human activities and soil erodibility. It is necessary to explore and identify the land-use types or land-use patterns that can control soil erosion and achieve certain agricultural production capabilities. This study established runoff plots with two slope gradients (5° and 15°) in north of Yan'an, one area of the Loess Plateau, with 3 single land-use types (cultivated land, CL; switchgrass, SG; and abandoned land, AL) and 2 composite land-use types (CL-SG and CL-AL). From 2006 to 2012, we continuously monitored the rainfall characteristics, runoff depth, soil loss, vegetation coverage, and soil physical properties. The results indicated a general trend in the number of runoff and soil loss events for the 5 land-use types: CL = CL-SG 〉 CL-AL 〉 SG〉 AL. The general trend for runoff depth, soil loss, their magnitudes of variation, and the slopes of rainfall-runoff regression equation was CL 〉 CL-SG 〉 CL-AL 〉 SG 〉 AL, whereas the rainfall threshold for runoff generation exhibited the opposite trend. Results of nonparametric test regarding runoff depth/EI3o and soil loss/EI3o, where EI3o is the product of rainfall kinetic energy and the maximum rainfall intensity over 30 min, and the runoff depth-soil loss relationship regression indicated that the effect of CL-AL was similar to that of SG; SG was similar to AL; and CL-AL, SG, and AL were superior to CL with regard to soil and water conservation. Runoff depth and soil loss significantly increased as the slope gradient increased. Runoff depth and soil loss were significantly correlated with the soil particle size composition and bulk density, respectively. The strongest significant correlations were found between runoff depth and vegetation coverage as well as between soil loss and vegetation coverage, which showed that vegetation coverage was the primary factor controlling soil erosion. Therefore, the composite land-use type CL-AL and the artificial grassland (SG) are appropriate options because both soil conservation and a certain degree of agricultural production are necessary in the study area.
基金National Natural Science Foundation of China,No.41371030
文摘The influence of monsoon climatic characteristics makes the tropics of China different from those of other parts of the world. Therefore, the location of the northern boundary of China's tropical zone has been one of the most controversial issues in the study of comprehensive physical regionalisation in China. This paper introduces developments in the study of the northern boundary of China's tropical zone, in which different scholars delimit the boundary with great differences based on different regionalisation objectives, indexes, and methods. The main divergence of opinion is found in different understandings of zonal vegetation, agricultural vegetation type, cropping systems, tropical soil type and tropical characteristics. In this study, we applied the Geo Detector model, which measures the spatial stratified heterogeneity, to validate the northern boundaries of the tropical zone delimited by six principal scholars. The results show that the mean q-statistic value of the higher latitude boundary delimited by Ren Mei'e is the largest(q=0.37), suggesting that, of the rival views, it best reflects the regional differences between China's tropical and subtropical zones, but it is not necessarily suitable for guiding the development of tropical agriculture. The mean values of the q-statistics of Zheng Du's line and Yu Xianfang's line around the Leizhou Peninsula at a lower latitude were smaller, at 0.10 and 0.08 respectively, indicating that the regional differences were smaller than those of Ren Mei'e's boundary. Against the background of global climate change, the climate itself is changing in fluctuation. It is, thus, worth our further research whether the northern boundary of the tropical zone should not be a fixed line but rather should fluctuate within a certain scope to reflect these changes.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05050100)
文摘Terrestrial vegetation is one of the most important components of the Earth's land surface. Variations in terrestrial vegetation directly impact the Earth system's balance of material and energy. This paper describes detected variations in vegetation activity at a national scale for China based on nearly 30 years of remote sensing data derived from NOAA/AVHRR(1982–2006) and MODIS(2001–2009). Vegetation activity is analyzed for four regions covering agriculture, forests, grasslands, and China's Northwest region with sparse vegetation cover(including regions without vegetation). Relationships between variations in vegetation activity and climate change as well as agricultural production are also explored. The results show that vegetation activity has generally increased across large areas, especially during the most recent decade. The variations in vegetation activity have been driven primarily by human factors, especially in the southern forest region and the Northwest region with sparse vegetation cover. The results further show that the variations in vegetation activity have influenced agricultural production, but with a certain time lag.
基金supported by the Danida-Enreca project "Ecological Laboratory" of the University of Ghana, Legon, Accra, Ghana
文摘In order to measure dust's nutrient input on farmland in different agro-ecological zones, Harmattan dust was sampled by mats with plastic straw in Ghana between 2002–2006. The inputs of total nutrients by Harmattan dust in Ghana per Harmattan period were about 1–2 kg Ca ha-1, 0.5–2 kg K ha-1, 0.5–1.5 kg Mg ha-1and less than 0.5 kg P ha-1. Compared with the annual input of nutrients by precipitation, the dust accounted for 10% or less of Ca, Mg and K but approximately 20%–40% of P. The input of nutrients by dust was only valid for areas with vegetation, because in areas with none or sparse vegetation, loss of soil due to wind erosion and hereby loss of nutrients might be significant. In farmland areas with bare and vegetated fields there seemed to be an internal redistribution of the nutrients and not a net gain of nutrients from outside the area(long-range transported dust). The input of P by dust might be of some importance in the traditional shifting cultivation systems, while the inputs of other three nutrients of Ca, Mg and K were so low that they must be considered insignificant. In the intensive agriculture systems with huge inputs of manures and fertilizers the nutrient input by dust is insignificant and could be neglected.