期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
2000—2014年黄土高原植被叶面积指数时空变化特征 被引量:12
1
作者 王志慧 姚文艺 +4 位作者 汤秋鸿 杨二 孔祥兵 王玲玲 肖培青 《中国水土保持科学》 CSCD 北大核心 2017年第1期71-80,共10页
研究植被叶面积指数(LAI)时空变化特征,对植被的水土保持效具有重要意义。利用MOD15A2H遥感产品,基于Mann-Kendall趋势检验与Sen斜率分析方法,提取区域尺度与像素尺度上的植被LAI变化特征,并基于不同子流域、坡度、坡向及植被覆盖类型,... 研究植被叶面积指数(LAI)时空变化特征,对植被的水土保持效具有重要意义。利用MOD15A2H遥感产品,基于Mann-Kendall趋势检验与Sen斜率分析方法,提取区域尺度与像素尺度上的植被LAI变化特征,并基于不同子流域、坡度、坡向及植被覆盖类型,对植被LAI的变化特征进行分析。基于MOD44B遥感产品,利用线性回归和偏相关系数,分析植被LAI的变化原因。结果表明:1)黄土高原2000—2014年,植被LAI呈显著增加趋势,其年绝对变化幅度为0.042,年相对变化程度为2.71%。2)空间上,在黄土高原58.6%的区域,LAI呈现显著增加趋势,仅有0.9%的区域LAI呈现显著减少趋势。植被LAI剧烈增加,主要发生在河口—龙门区间,包括皇甫川、窟野河、无定河和延河。植被在15°~35°的坡度上,LAI变化程度最剧烈,其变化在各坡向上没有显著差异,农田和草地的LAI变化程度最剧烈。3)与植被总覆盖度相比,植被垂直维结构与黄土高原植被LAI的变化更为相关,其中树木覆盖度的增加,是植被垂直维结构变化的重要原因之一。 展开更多
关键词 MODIS产品 黄土高原 植被叶面积指数 时空变化分析
下载PDF
基于MODIS数据的北京植被叶面积指数的时空变化 被引量:9
2
作者 谢军飞 许蕊 《生态学杂志》 CAS CSCD 北大核心 2014年第5期1374-1380,共7页
利用MODIS产品中分辨率为1km的LAI数据,结合植被功能型分类,分析了2010--2012年北京植被LAI的月际变化与空间分布特征;并在GIS与Timesat软件的支持下,探讨了各种植被类型LAI的多年变化。结果表明:在2010--2012年的不同月份中,北... 利用MODIS产品中分辨率为1km的LAI数据,结合植被功能型分类,分析了2010--2012年北京植被LAI的月际变化与空间分布特征;并在GIS与Timesat软件的支持下,探讨了各种植被类型LAI的多年变化。结果表明:在2010--2012年的不同月份中,北京的植被LAI较高值均出现在西北山地、东北山地、怀柔北部等林地,并呈现从东北山地至西南向中心城区的递减分布;其次,基于LAI叠加分析的结果显示,各种植被类型LAl年平均值的波动均较小,在2010-2012年,针叶林、阔叶林、草地、作物LAI的年均值波动范围分别在1.45~1.50、1.24~1.27、0.90~0.92和0.48~0.51;此外,Savitzky-Golay平滑滤波结果表明,针叶林、阔叶林、草地、作物LAI的月际变化基本体现了植被的生长轨迹。 展开更多
关键词 MODIS数据 植被叶面积指数 植被功能型 Savitzky—Golay滤波 时空变化
原文传递
应用遥感数据反演针叶林有效叶面积指数 被引量:32
3
作者 席建超 张红旗 张志强 《北京林业大学学报》 CAS CSCD 北大核心 2004年第6期36-39,共4页
以红壤丘陵典型区千烟洲及其周边为研究区,利用陆地卫星TM图像数据和同期野外实测的37个针叶林样地有效叶面积指数数据,分析了遥感植被指数与湿地松、杉木林、马尾松和针叶林总体之间的相关关系,进而分别建立了遥感植被指数与不同林型... 以红壤丘陵典型区千烟洲及其周边为研究区,利用陆地卫星TM图像数据和同期野外实测的37个针叶林样地有效叶面积指数数据,分析了遥感植被指数与湿地松、杉木林、马尾松和针叶林总体之间的相关关系,进而分别建立了遥感植被指数与不同林型针叶林有效叶面积指数间的线性与非线性回归模型.研究表明,遥感植被指数与不同林型针叶林有效叶面积指数存在较好的相关性,但不同林型之间的相关系数存在一定差异;所建立的针叶林有效叶面积指数遥感反演模型以三次曲线回归方程拟合精度最高. 展开更多
关键词 有效叶面积指数 植被指数 遥感 针叶林 红壤丘陵区
下载PDF
The Suitability of Using Leaf Area Index to Quantify Soil Loss under Vegetation Cover 被引量:7
4
作者 ZHANG Wentai YU Dongsheng +4 位作者 SHI Xuezheng WANG Hongjie GU Zhujun ZHANG Xiangyan TAN Manzhi 《Journal of Mountain Science》 SCIE CSCD 2011年第4期564-570,共7页
Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss u... Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss under vegetation cover.Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates(40 mm h-1 and 54 mm h-1) using a portable rainfall simulator.Runoff rate,sediment concentration and soil loss rate were measured at relatively runoff stable state.Significant negative exponential relationship(p < 0.05,R2 = 0.83) and linear relationship(p < 0.05,R2 = 0.84) were obtained between LAI and sediment concentration,while no significant relationship existed between VFC and sediment concentration.The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration.LAI could better quantify such a role than VFC.However,neither LAI nor VFC could explain runoff rate or soil loss rate.Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation. 展开更多
关键词 Leaf area index(LAI) Runoff steady state Sediment concentration Simulated rainfall
下载PDF
Using leaf area index(LAI) to assess vegetation response to drought in Yunnan province of China 被引量:4
5
作者 Kwangchol KIM WANG Ming-cheng +3 位作者 Sailesh RANJITKAR LIU Su-hong XU Jian-chu Robert J.ZOMER 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1863-1872,共10页
Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to... Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness. 展开更多
关键词 MODIS Leaf area index distribution Standardized Precipitation Index(SPI) Drought Yunnan
下载PDF
Influence of Planting Date on the Growth and Yield of Different Maturity Group of Soybeans in the Southeastern Coastal Plains of USA
6
作者 P. Wiatrak G. Chen 《Journal of Agricultural Science and Technology(B)》 2011年第2期251-265,共15页
Planting date is a critical component of soybean [Glycine max (L.) Merr.] production, under dry land conditions in the Southeastern Coastal Plain. The objectives of this study were to 1. Evaluate the effect of plant... Planting date is a critical component of soybean [Glycine max (L.) Merr.] production, under dry land conditions in the Southeastern Coastal Plain. The objectives of this study were to 1. Evaluate the effect of planting date on plant leaf area index (LAI) and normalized difference vegetation index (NDVI) at 60 and 90 days after planting (DAP), plant height and grain yield, and 2. Determine the optimum planting period by integrating the responses from vegetation growth to yield for soybean maturity group (MG) IV-VIII under dry land conditions in the Southeastern Coastal Plain. Planting dates were scheduled about 14-days intervals from late April to mid-July (2008) or late July (2009). Greatest grain yield for MG IV was obtained from planting in around mid-May in both years. The yield was greater for MG V planted in May and greater for MG VI-VIII planted in late April and May, but started to decline for planting in early June. Plant LAI and NDVI at 60 DAP were affected by both planting date and precipitation, but were poorly correlated with grain yield. However, plant LAI and NDVI were well correlated with yield and were greater for May planting dates at 90 DAP. These indiccs declined for soybean planted after May. Mature plant height decreased more rapidly with delayed planting. These results indicate that plant growth and yield decreased after May planting. Optimum planting period for all MGs was early to mid-May. 展开更多
关键词 SOYBEAN planting date leaf area index normalized difference vegetation index grain yield plant growth.
下载PDF
Separating impacts of vegetation change and climate variability on streamflow using hydrological models together with vegetation data 被引量:6
7
作者 LI HuiYun ZHANG YongQiang WANG BenDe 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期1964-1972,共9页
Vegetation information is seldom considered in lumped conceptual rainfall-runoff models.This paper uses two modified rainfall-runoff models,the Xinanjiang-ET and SIMHYD-ET models in which vegetation leaf area index is... Vegetation information is seldom considered in lumped conceptual rainfall-runoff models.This paper uses two modified rainfall-runoff models,the Xinanjiang-ET and SIMHYD-ET models in which vegetation leaf area index is incorporated,to investigate impacts of vegetation change and climate variability on streamflow in a Southern Australian catchment,the Crawford River experimental catchment,where Tasmanian blue gum plantations were introduced gradually from 1998 till 2005.The Xinanjiang-ET and SIMHYD-ET models incorporate remotely-sensed leaf area index(LAI) data obtained from the Advanced Very High Resolution Radiometer(AVHRR) on board NOAA polar orbiting satellites.Compared to the original versions,the Xinanjiang-ET and SIMHYD-ET models show marginal improvements in runoff simulations in the pre-plantation period(1882-1997).The calibrated Xinanjaing-ET and SIMHYD-ET models are then used to simulate plantation impact on streamflow in the post-plantation period.The total change in streamflow between the pre-plantation and post-plantation periods is 32.4 mm/a.The modelling results from the two models show that plantation reduces streamflow by 20.5 mm/a,and climate variability reduces streamflow by 11.9 mm/a.These results suggest that increase in plantations can reduce streamflow substantially,even more than climate variability. 展开更多
关键词 vegetation change climate variability streamflow leaf area index hydrological model Crawford River
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部