Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss u...Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss under vegetation cover.Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates(40 mm h-1 and 54 mm h-1) using a portable rainfall simulator.Runoff rate,sediment concentration and soil loss rate were measured at relatively runoff stable state.Significant negative exponential relationship(p < 0.05,R2 = 0.83) and linear relationship(p < 0.05,R2 = 0.84) were obtained between LAI and sediment concentration,while no significant relationship existed between VFC and sediment concentration.The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration.LAI could better quantify such a role than VFC.However,neither LAI nor VFC could explain runoff rate or soil loss rate.Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation.展开更多
Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to...Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness.展开更多
Planting date is a critical component of soybean [Glycine max (L.) Merr.] production, under dry land conditions in the Southeastern Coastal Plain. The objectives of this study were to 1. Evaluate the effect of plant...Planting date is a critical component of soybean [Glycine max (L.) Merr.] production, under dry land conditions in the Southeastern Coastal Plain. The objectives of this study were to 1. Evaluate the effect of planting date on plant leaf area index (LAI) and normalized difference vegetation index (NDVI) at 60 and 90 days after planting (DAP), plant height and grain yield, and 2. Determine the optimum planting period by integrating the responses from vegetation growth to yield for soybean maturity group (MG) IV-VIII under dry land conditions in the Southeastern Coastal Plain. Planting dates were scheduled about 14-days intervals from late April to mid-July (2008) or late July (2009). Greatest grain yield for MG IV was obtained from planting in around mid-May in both years. The yield was greater for MG V planted in May and greater for MG VI-VIII planted in late April and May, but started to decline for planting in early June. Plant LAI and NDVI at 60 DAP were affected by both planting date and precipitation, but were poorly correlated with grain yield. However, plant LAI and NDVI were well correlated with yield and were greater for May planting dates at 90 DAP. These indiccs declined for soybean planted after May. Mature plant height decreased more rapidly with delayed planting. These results indicate that plant growth and yield decreased after May planting. Optimum planting period for all MGs was early to mid-May.展开更多
Vegetation information is seldom considered in lumped conceptual rainfall-runoff models.This paper uses two modified rainfall-runoff models,the Xinanjiang-ET and SIMHYD-ET models in which vegetation leaf area index is...Vegetation information is seldom considered in lumped conceptual rainfall-runoff models.This paper uses two modified rainfall-runoff models,the Xinanjiang-ET and SIMHYD-ET models in which vegetation leaf area index is incorporated,to investigate impacts of vegetation change and climate variability on streamflow in a Southern Australian catchment,the Crawford River experimental catchment,where Tasmanian blue gum plantations were introduced gradually from 1998 till 2005.The Xinanjiang-ET and SIMHYD-ET models incorporate remotely-sensed leaf area index(LAI) data obtained from the Advanced Very High Resolution Radiometer(AVHRR) on board NOAA polar orbiting satellites.Compared to the original versions,the Xinanjiang-ET and SIMHYD-ET models show marginal improvements in runoff simulations in the pre-plantation period(1882-1997).The calibrated Xinanjaing-ET and SIMHYD-ET models are then used to simulate plantation impact on streamflow in the post-plantation period.The total change in streamflow between the pre-plantation and post-plantation periods is 32.4 mm/a.The modelling results from the two models show that plantation reduces streamflow by 20.5 mm/a,and climate variability reduces streamflow by 11.9 mm/a.These results suggest that increase in plantations can reduce streamflow substantially,even more than climate variability.展开更多
基金the support for this research from the National Basic Research Program of China(Grant No.2007CB407206)the National Natural Science Foundation of China(Grant No.40921061)The National Basic Research Program of China(Grant No.2010CB950702)
文摘Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss under vegetation cover.Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates(40 mm h-1 and 54 mm h-1) using a portable rainfall simulator.Runoff rate,sediment concentration and soil loss rate were measured at relatively runoff stable state.Significant negative exponential relationship(p < 0.05,R2 = 0.83) and linear relationship(p < 0.05,R2 = 0.84) were obtained between LAI and sediment concentration,while no significant relationship existed between VFC and sediment concentration.The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration.LAI could better quantify such a role than VFC.However,neither LAI nor VFC could explain runoff rate or soil loss rate.Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation.
基金a part of the Project on "Building Effective Water Governance in the Asian Highlands" supported by Canada’s International Development Research Centre (IDRC)National Science Foundation of China, Grant No. 31270524the CGIAR research programs on ‘Climate change adaptation and mitigation’ (CRP6.4)
文摘Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness.
文摘Planting date is a critical component of soybean [Glycine max (L.) Merr.] production, under dry land conditions in the Southeastern Coastal Plain. The objectives of this study were to 1. Evaluate the effect of planting date on plant leaf area index (LAI) and normalized difference vegetation index (NDVI) at 60 and 90 days after planting (DAP), plant height and grain yield, and 2. Determine the optimum planting period by integrating the responses from vegetation growth to yield for soybean maturity group (MG) IV-VIII under dry land conditions in the Southeastern Coastal Plain. Planting dates were scheduled about 14-days intervals from late April to mid-July (2008) or late July (2009). Greatest grain yield for MG IV was obtained from planting in around mid-May in both years. The yield was greater for MG V planted in May and greater for MG VI-VIII planted in late April and May, but started to decline for planting in early June. Plant LAI and NDVI at 60 DAP were affected by both planting date and precipitation, but were poorly correlated with grain yield. However, plant LAI and NDVI were well correlated with yield and were greater for May planting dates at 90 DAP. These indiccs declined for soybean planted after May. Mature plant height decreased more rapidly with delayed planting. These results indicate that plant growth and yield decreased after May planting. Optimum planting period for all MGs was early to mid-May.
文摘Vegetation information is seldom considered in lumped conceptual rainfall-runoff models.This paper uses two modified rainfall-runoff models,the Xinanjiang-ET and SIMHYD-ET models in which vegetation leaf area index is incorporated,to investigate impacts of vegetation change and climate variability on streamflow in a Southern Australian catchment,the Crawford River experimental catchment,where Tasmanian blue gum plantations were introduced gradually from 1998 till 2005.The Xinanjiang-ET and SIMHYD-ET models incorporate remotely-sensed leaf area index(LAI) data obtained from the Advanced Very High Resolution Radiometer(AVHRR) on board NOAA polar orbiting satellites.Compared to the original versions,the Xinanjiang-ET and SIMHYD-ET models show marginal improvements in runoff simulations in the pre-plantation period(1882-1997).The calibrated Xinanjaing-ET and SIMHYD-ET models are then used to simulate plantation impact on streamflow in the post-plantation period.The total change in streamflow between the pre-plantation and post-plantation periods is 32.4 mm/a.The modelling results from the two models show that plantation reduces streamflow by 20.5 mm/a,and climate variability reduces streamflow by 11.9 mm/a.These results suggest that increase in plantations can reduce streamflow substantially,even more than climate variability.